医用高等数学
上QQ阅读APP看书,第一时间看更新

3.2 导数的运算

本节通过学习导数的运算法则,学会利用导数的基本公式,求初等函数导数,以及隐函数和由参数方程所确定的函数的导数.

3.2.1 导数的运算法则

定理1 设函数u=u(x),v=v(x)在点x处可导,则它们的和、差、积、商(分母不为零)也在x处可导,且

函数和与积的导数运算法则可以推广到有限个函数的情况.显然若C为常数,则有(Cu)'=Cu'.

例1 求三角函数tanx,cotx,secx和cscx的导数.

类似地可得

类似地可得

(cscx)'=-cotxcscx.

例2 已知y=2x+-2lnx-1,求y'.

3.2.2 反函数的求导法则

定理2 设函数y=f(x)在区间Ix内严格单调、可导且f'(x)≠0.则其反函数x=f-1(y)=x(y)在对应区间I,也单调、可导,且反函数的导数x'(y)=1/f-1(x).(证明略)

例4 求函数y=arcsinx和y=arccosx的导数.

解 函数y=arcsinx,x∈[-1,1]是函数x=siny,y的反函数.

时,x=x(y)=siny单调递增,且x'(y)=cosy≠0.由定理2,得

因此

类似地可得

例5 求函数y=arctanx和y=arccotx的导数.

解 函数y=arctanx,x∈(-∞,+∞)是函数x=tany,的反函数,当时,x=x(y)=tany单调递增,且x'(y)=sec2y≠0.由定理2,得

类似地可得

例6 求指数函数y=ax(a>0,a≠1)的导数

解 因为函数y=ax,x∈(-∞,+∞)是函数x=logay,y∈(0,+∞)的反函数,当y∈(0,+∞),x=logay是单调函数,且.由定理2,得

总之,将本节公式汇总如表3-2所示.

表3-2 常见函数导数公式表(2)

3.2.3 复合函数的求导法则

定理3 如果函数u=φ(x)在点x处可导,函数y=f(u)在点u处可导,则复合函数函数y=f(φ(x))在点x处可导,且

复合函数的导数等于函数对中间变量的导数与中间变量对自变量的导数之积.(证明略)

例8 设y=ln[cos(2x2+5)],求y'.

例9 设x>0,证明幂函数的求导公式

(xα)'=αxα-1.

解 因为xα=eαlnx,所以

例10 某血管横截面上离中轴线距离r处血液流动速度为

其中,R是血管半径,ρ,λ,η为生理常数.已知阿司匹林具有舒张微细血管的作用.假如病人遵照医嘱服用两片阿司匹林,在随后的一段时间里,动脉血管的半径以 扩张,求动脉中血流速度v关于时间t的变化率.

解 因为v=v(R),R=R(t),所以v=v(R(t)).根据复合函数求导公式有

因为 ,所以 .从而

3.2.4 隐函数的求导

我们知道平面曲线的方程可以用函数y=f(x)表示,如正弦曲线y=sinx,抛物线y=2x2+1,也可以用含有两个变量的方程F(x,y)=0表示,如圆x2+y2=1,双曲线x2-y2=1等.这些曲线是某些函数对应的图形,前者称为显函数(explicit function),后者称为隐函数(implicit function).

显函数:函数的因变量y可用自变量x的一个表达式直接表示的函数.

隐函数:因变量y与自变量x的函数对应关系用一个方程F(x,y)=0表示,用这种形式表示的函数称为隐函数.

上述介绍的求导数的方法均是关于显函数,那么对于隐函数如何求其导数呢?

例11 求由方程ey+xy-e=0所确定的隐函数y的导数y'.

解 将方程左端中的y用函数y(x)表示,则该方程变为恒等式

ey(x)+xy(x)-e=0

然后将左端视为x的复合函数,并求导,它自然应为零,得到

(ey(x)+xy(x)-e)'=ey(x)y'(x)+y(x)+xy'(x)=0.

解出y'(x),得到

由此例可知,隐函数的求导方法为:将方程F(x,y)=0两边分别对x求导,并在求导过程中视y为x的函数,即将y视为中间变量,整个F(x,y)看作是以x为自变量的复合函数,而后求解出中间变量y的导数即可.

例12 求曲线x2+4y2=8在点(2,-1)处的切线方程.

解 首先求方程所确定的函数y的导数,将方程两边分别对x求导,得到2x+8y·y'=0,解得,所以曲线在点(2,-1)处的切线的斜率为

故所求切线方程为

3.2.5 参数方程所确定函数的求导

参数方程的一般形式为

若函数x=φ(t)具有单调连续的反函数t=φ-1(x),那么函数y看成是由函数y=ψ(t)和t=φ-1(x)复合而成的函数.由复合函数和反函数的求导法则,有

例13 求由参数方程所确定的函数y(x)的导数.

例14 求由极坐标系下心形线r=2(1+cosθ)在点处的切线方程.

解 将极坐标方程改写成参数方程得

求导得

x'(θ)=-2sinθ-2sin2θ,y'(θ)=2cosθ+2cos2θ,

所以

因此心形线在 处的切线方程为

3.2.6 高阶导数

如果函数y=f(x)的导数y'=f'(x)仍然可导,则称y'=f'(x)的导数为函数f(x)的二阶导数(second derivative),记作

类似地,二阶导数的导数称为三阶导数,三阶导数的导数称为四阶导数……,一般地,n-1阶导数的导数称为n阶导数,分别记作

二阶及二阶以上的导数称为高阶导数(high order derivative).

例15 设y=ln(1+x2),求y″,y″|x=1.

例17 求函数y=xn(n为自然数)的各阶导数.

特别地,y(n)=n!;y(n+m)=0,m=1,2,….

例18 求y=sinx的n阶导数.

类似可推出

例19 求函数y=ln(1+x)的n阶导数.

将本节高阶导数公式汇总见表3-3.

表3-3 常见函数导数公式表(3)