上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.1.3 特殊行列式
下面利用行列式的定义来计算几种特殊的n阶行列式。
1.对角行列式
只有在对角线上有非零元素的行列式称为对角行列式。
例1.5 证明对角行列式。
其中行列式(1.6)主对角线上的元素是λi(i=1,2,…,n),行列式(1.7)次对角线上的元素是λi(i=1,2,…,n),其他元素都是0。
证 利用n阶行列式的定义逐次降阶展开行列式(1.6)得
对行列式(1.7),注意到降阶展开时,元素λ1,λ2,…,λn依次在第n,n-1,…,2,1列,故有
用同样的方法可以将式(1.7)的结果加以类推。即
2.下(上)三角行列式
对角线以上(下)的元素都为零的行列式称为下(上)三角行列式。
例1.6 试证下三角行列式
证 利用n阶行列式的定义,逐次降阶展开,故有
3.一个重要的行列式公式
例1.7 证明
证 对等式左边行列式按第1行展开,得
所以原式成立。
一般地,可以用数学归纳法证明
公式(1.10)在行列式的计算与证明中经常使用。