低频磁刚度非线性隔振理论与方法
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.2.2 磁悬浮式准零刚度隔振技术

基于电磁耦合结构的非线性磁负刚度机制也是设计准零刚度隔振器的一种有效方式。相比传统“三弹簧”式准零刚度隔振构型,磁结构具有非接触、无摩擦、响应时间快、作动力大、寿命长及成本低等优点,因而,具有较好的工程应用前景[47]。早在2002年,Puppin和Fratello[48]就设计了一种基于简单的磁斥力悬浮的非线性隔振器,如图1-3a所示,四对相斥的磁体提供对工作平台的负载力,研究结果表明,该磁悬浮装置无须外部能量且具有较好的隔振性能。Carrella等[4]基于三个磁体间吸力特性设计了一种准零刚度隔振器,如图1-3b所示,中间磁体为被隔质量单元,上、下两个永磁体固定,这样磁体间的非线性吸力可以产生磁负刚度以抵消弹簧的正刚度,并且可以将隔振系统的固有频率从14Hz降低至7Hz。然而,当隔振器的振动位移超过一定范围时,可能会导致磁悬浮隔振器进入不稳定的工作区间,影响隔振性能。此外,通过结构和参数的优化设计,该装置也可以实现双稳态特性,这将在第1.2.4节中详细讨论[49]。Robertson等[18]也开展了磁悬浮式准零刚度隔振技术的研究,他们利用了一对固定的立方体磁体,其中,中间磁体和下面磁体之间是斥力,与上面磁体之间则为吸力以抵抗重力,这种磁体结构与文献[4]不同,可以实现低刚度特性,其构型如图1-3c所示。随后,Wu等[17]也设计了一种磁悬浮式准零刚度隔振器,由三个相互排斥的矩形磁体构成,如图1-3d所示。尽管中心永磁体被另外两个永磁体的斥力悬浮,但这种构型与之前的模型不同,因为图1-3d中悬浮磁体垂直于轴线方向运动,而图1-3a~c中的被隔磁体沿轴向运动。郑宜生等[50]利用两个同轴且沿径向磁化的环形永磁体设计了高静低动刚度隔振器,如图1-3e所示,基于安培电流模型获得了磁体间的磁力,分析了几何参数对磁刚度影响规律,提出了结构刚度特性的优化设计方法,研究表明,所提出的隔振器具有良好的隔振性能。随后该研究团队将其应用于Stewart平台支腿,有效降低了Stewart平台的共振频率,提高六个自由度的隔振性能[12,51]。Zhu等[52]也基于磁悬浮结构实现了六个自由度的隔振。Sun等[53]使用两对同极正对磁体设计了一种悬浮式准零刚度隔振器,其中,中心的两个永磁体固定在悬臂梁的尖端,如图1-3f所示。Yan等[54]将杠杆结构引入磁刚度非线性隔振系统,通过调节杠杆比(α)可调节隔振系统工作频带,为非线性隔振系统隔振性能的调控提供了新途径。

由于磁负刚度和非线性刚度有益于提升隔振系统的隔振性能,近年来磁悬浮式准零刚度隔振得到了深入研究与工程应用。Zhou等[47]设计了一种半主动式高静低动隔振器,主要由线性弹簧和由电磁线圈与永磁体构成的磁弹簧并联构成,通过改变线圈电流方向可改变磁弹簧的正负刚度属性,同时也可通过调节电流大小改变隔振器的隔振性能。Li等[55]设计了一种基于磁力弹簧与橡胶膜并联的磁悬浮隔振器,并对隔振器的负载能力、轴向磁刚度和固有频率进行了优化设计,研究结果表明,隔振器的最低峰值频率为1.5Hz,在0~100Hz内响应可衰减-40dB。颜格等[56]提出了一种新型的非线性刚度补偿方法,利用同极相斥磁体的渐硬正刚度补偿负刚度,为实现准零刚度隔振提供了新途径。与传统的线性弹簧和双稳态负刚度并联实现准零刚度的方法相比,该方法提供了更多的设计灵活性,比如在负刚度结构参数调整导致负刚度数值变化的条件下,仅仅通过调节磁体初始间距就可以实现对负刚度的有效补偿以实现准零刚度。

图1-3 磁悬浮式准零刚度隔振器

a)磁斥力型磁悬浮结构[48] b)基于磁吸力的磁悬浮准零刚度隔振器[4] c)三个立方永磁体式的磁悬浮结构[18] d)磁斥力型准零刚度隔振器[17] e)径向磁化式准零刚度隔振器[60] f)悬臂梁支撑式磁悬浮隔振器[53]

综上所述,通过几何非线性法和电磁非线性设计法均可实现等效负刚度以降低系统的总刚度,从而拓宽隔振系统隔振频带,提升隔振性能。与传统的线性隔振相比,准零刚度隔振器的隔振频带宽且隔振性能好,因而受到广泛关注[57]。经过10多年的研究,该非线性隔振方法已经取得长足的进步与发展。目前,在部分工程领域已经得到了初步应用[58]。然而,非线性隔振器也存在一些问题值得思考。例如,系统的阻尼比过小或者外界激励幅值过大,非线性系统会发生跳跃、突跳、软化、硬化等复杂的动力学行为,导致隔振系统工作频带变窄、隔振性能变差,甚至不如等效的线性隔振[59]。因此,需要引入相应的控制系统或元件以解决非线性动力学行为的影响。