数学背景
阿那克西曼德对世界的看法基本上都被他的后继者们接受了。然而,希腊人从来不愿意彻底地接受“无限”这一概念。他们认为实在往往是边界清楚、结构明晰的。无限则是无限定、无定形、无规定的。真实存在的事物怎么可能以无限这样不具有明确定义的概念作为其根基呢?
阿那克西曼德的继任者阿那克西美尼(Araximenes)试图强化无限这一概念。虽然阿那克西曼德认为无限是土、空气、火和水的混合物,但阿那克西美尼认为气才是最本质的基本元素:火实质上就是膨胀了的气,而云则是气受压缩产生的;如果气被进一步压缩,那么它会成为液态水;如果再进一步地压缩,就会变成土,甚至是石头——在被压缩的过程中,它会变得更冷、更密、更重和更暗。与此类似,阿那克西曼德所说的对立无非就是气的变疏或是变厚。量的变化导致了质的差异。
如果实在的基本性质是可以量化的,那么算术学和几何学就成为理解实在的结构的关键。这些学科部分是由埃及人建立的。希罗多德记录称,埃及人对分数和几何的兴趣源自法老对农民征税时的现实要求,这些税收是与农民们的耕地面积成比例的。当尼罗河泛滥而淹没了农民的部分耕地时,农民的纳税义务会根据剩余耕地的面积按比例减少。
许多数学史学家都把埃及人对数学的兴趣描述为完全出于现实考量的结果。然而,任何建立了数学的文化都包含用于消遣的数学。有一卷被称为《莱茵德纸草书》(Rhind Papyrus)的书包含着有记录以来最早的算术学和几何学谜题。从这个小册子中我们了解到,埃及人在第十二王朝时期(约公元前2000年—前1788年)就已经得出了π的近似值(他们认为是3.16),并且提出了计算截断形金字塔体积的公式:V =(n/3)(a2 + ab + b2),其中a和b是金字塔底边的长度,n是金字塔的高度。然而,《莱茵德纸草书》也表明埃及人在计算中严重依赖于试错法:他们是通过反复做加法来解决乘法问题的。
许多学者,尤其是数学家,都对古埃及数学中几乎不存在证明感到惊讶。但这是古代社会数学发展中的常态,而非特例。巴比伦人、玛雅人以及古印度人对于验证他们的结论几乎没有兴趣。对他们来说,通往发现的步骤是手段,而不是目的。他们从未将推理过程视为应该得到公开展示以支持结论的结构——就好比建筑师并不会用玻璃墙向大家保证房梁很坚固。早期的数学家满足于仅仅展示他们所发现的结论。
而希腊人则改变了数学的思维,他们的后继者就想住在玻璃墙搭成的房子里。