参考文献
[1]林伯强.中国能源发展报告[M].北京:北京大学出版社,2019.
[2]梅祖彦,等.抽水蓄能电站百问[M].北京:中国电力出版社,2002.
[3]FRANK S BARNES,JONAH G LEVINE.大规模储能技术[M].肖曦,聂赞相,译.北京:机械工业出版社,2013.
[4]晏志勇,翟国寿.我国抽水蓄能电站发展历程及前景展望[J].水力发电,2004(12):73-76.
[5]文贤馗,张世海,邓彤天,等.大容量电力储能调峰调频性能综述[J].发电技术,2018,39(06):487-492.
[6]罗莎莎,刘云,刘国中,等.国外抽水蓄能电站发展概况及相关启示[J].中外能源,2013,18(11):26-29.
[7]刘英军,刘畅,王伟,等.储能发展现状与趋势分析[J].中外能源,2017,22(04):80-88.
[8]程路,白建华.新时期中国抽水蓄能电站发展定位及前景展望[J].中国电力,2013,46(11):155-159.
[9]中国水力发电工程学会.水电学会杨永江在2019世界水电大会抽水蓄能分论坛上作主题发言[EB/OL].(2019-5-19)[2020-10-11].http://www.hydropower.org.cn/showNewsDetail.asp?nsId=25541.
[10]陈海生,凌浩恕,徐玉杰.能源革命中的物理储能技术[J].中国科学院院刊,2019,34(04):450-459.
[11]张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008(07):1-9.
[12]张新敬,陈海生,刘金超,等.压缩空气储能技术研究进展[J].储能科学与技术,2012,1(01):26-40.
[13]傅昊,张毓颖,崔岩,等.压缩空气储能技术研究进展[J].科技导报,2016,34(23):81-87.
[14]张建军,周盛妮,李帅旗,等.压缩空气储能技术现状与发展趋势[J].新能源进展,2018,6(02):140-150.
[15]陈海生,刘金超,郭欢,等.压缩空气储能技术原理[J].储能科学与技术,2013,2(02):146-151.
[16]梅生伟,李瑞,陈来军,等.先进绝热压缩空气储能技术研究进展及展望[J].中国电机工程学报,2018,38(10):2893-2907.
[17]人民网-江苏频道.盐穴压缩空气储能国家级示范项目在常州金坛开工[EB/OL].(2018-12-25)[2020-10-12].http://js.people.com.cn/n2/2018/1225/c360301-32450717.html.
[18]MOUSAVI G S M,FARAJI F,MAJAZI A,et al.A comprehensive review of flywheel energy storage system technology[J].Renewable and sustainable energy reviews,2017(67):477-490.
[19]葛举生,王培红.新型飞轮储能技术及其应用展望[J].电力与能源,2012,33(02):181-184.
[20]戴兴建,邓占峰,刘刚,等.大容量先进飞轮储能电源技术发展状况[J].电工技术学报,2011,26(07):133-140.
[21]蒋书运,卫海岗,沈祖培.飞轮储能技术研究的发展现状[J].太阳能学报,2000(04):427-433.
[22]张维煜,朱熀秋.飞轮储能关键技术及其发展现状[J].电工技术学报,2011,26(07):141-146.
[23]戴兴建,张小章,姜新建,等.清华大学飞轮储能技术研究概况[J].储能科学与技术,2012,1(01):64-68.
[24]BEACON POWER.Hazle Township,Pennsylvania[EB/OL].[2020-10-12].https://beaconpower.com/hazle-township-pennsylvania/.
[25]胡婧娴,林仕立,宋文吉,等.城市轨道交通储能系统及其应用进展[J].储能科学与技术,2014,3(02):106-116.
[26]唐长亮,张小虎,孟祥梁.国外飞轮储能技术状况研究[J].中外能源,2018,23(06):82-86.
[27]VYAS G,DONDAPATI R S.AC Losses in the development of superconducting magnetic energy storage devices[J].Journal of energy storage,2020,27(2):101073.1-101073.7.
[28]ONNES H K.Report on the researches made in the Leiden cryogenic laboratory between the third internatinal congress of refrigeration[J].Community physics lab university leiden,1911:122-124.
[29]BOOM R,PETERSON H.Superconductive energy storage for power systems[J].IEEE transactions on magnetics,1972,8(3):701-703.
[30]BOENIG H J,HAUER J F.Commissioning tests of the bonneville power administration 30MJ superconducting magnetic energy storage unit[J].IEEE power engineering review,1985,PER-5(2):32-33.
[31]LUONGO C A,BALDWIN T,RIBEIRO P,et al.A 100MJ SMES demonstration at FSU-CAPS[J].IEEE transactions on applied superconductivity,2003,13(2):1800-1805.
[32]郭文勇,张京业,张志丰,等.超导储能系统的研究现状及应用前景[J].科技导报,2016,34(23):68-80.
[33]DAI S,XIAO L,WANG Z,et al.Development and demonstration of a 1MJ high-Tc SMES[J].IEEE transactions on applied superconductivity,2012,22(3):5700304.
[34]Xiao L,Dai S,Lin L,et al.Development of the world's first HTS power substation[J].IEEE transactions on applied superconductivity,2012,22(3):5000104.
[35]郭文勇,蔡富裕,赵闯,等.超导储能技术在可再生能源中的应用与展望[J].电力系统自动化,2019,43(08):2-19.
[36]ARMAND M,MURPHY D,BROADHEAD J,et al.Materials for advanced batteries[M].New York:Plenum Press,1980.
[37]李泓.锂离子电池基础科学问题(XV)——总结和展望[J].储能科学与技术,2015,4(03):306-318.
[38]张舒,王少飞,凌仕刚,等.锂离子电池基础科学问题(X)——全固态锂离子电池[J].储能科学与技术,2014,3(04):376-394.
[39]LIU WEI,SONG MIN-SANG,KONG BIAO,et al.Flexible and stretchable energy storage:recent advances and future perspectives[J].Advanced materials,2017(29):1603436.
[40]DUAN H,FAN M,CHEN W P,et al.Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries[J].Advanced materials,2019,31(12):1807789.
[41]ZHOU W,WANG Z,PU Y,et al.Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries[J].Advanced materials,2018:1805574.
[42]Fenton D E,Parker J M,Wright P V.Complexes of Alkali Metal Ions with Poly(Ethylene Oxide)[J].Polymer,1973,14(11):589.
[43]CHEN R,QU W,GUO X,et al.The pursuit of solid-state electrolytes for lithium batteries:from comprehensive insight to emerging horizons[J].Materials horizons,2016(3):487-516.
[44]ZHANG Z,SHAO Y,LOTSCH B,et al.New horizons for inorganic solid state ion conductors[J].Energy&environmental science,2018(11):1945-1976.
[45]KAMAYA N,HOMMA K,YAMAKAWA Y,et al.A lithium superionic conductor[J].Nature materials,2011(10):682-686.
[46]BRON P,JOHANSSON S,ZICK K,et al.Li10SnP2S12:An affordable lithium superionic conductor[J].Journal of the American chemical society,2013(135):15694-15697.
[47]LV FEI,WANG ZHUYI,SHI LIYI,et al.Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J].Journal of power sources,2019(441):227175.
[48]MASOUD E M,EL-BELLIHI A A,BAYOUMY W A,et al.Organic-inorganic composite polymer electrolyte based on PEO-LiClO4 and nano-Al2O3 filler for lithium polymer batteries:Dielectric and transport properties[J].Journal of alloys and compounds,2013(575):223-228.
[49]WANG X,ZHANG Y,ZHANG X,et al.Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries[J].ACS applied materials&interfaces,2018(10):24791-24798.
[50]ZHANG T,IMANISHI N,HASEGAWA S,et al.Water-stable lithium anode with the three-layer construction for aqueous lithium-air secondary batteries[J].Electrochemical and solid-state letters,2009(12):A132.
[51]NUGENT J L,MOGANTY S S,ARCHER L A,et al.Nanoscale organic hybrid electrolytes[J].Advanced materials,2010(22):3677-3680.
[52]CROCE F,APPETECCHI G B,PERSI L,et al.Nanocomposite polymer electrolytes for lithium batteries[J].Nature,1998(394):456-458.
[53]PAL P,GHOSH A.Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes[J].Electrochim acta,2018(260):157-167.
[54]LUTKENHAUS J L,OLIVETTI E A,VERPLOEGEN E A,et al.Anisotropic structure and transport in self-assembled layered polymer-clay nanocomposites[J].Langmuir,2007(23):8515-8521.
[55]LIU W,LIU N,SUN J,et al.Ionic Conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J].Nano letters,2015(15):2740-2745.
[56]LI Y,ZHANG W,DOU Q,et al.Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries[J].Journal of materials chemistry,2019(7):3391-3398.
[57]GUO Q,HAN Y,WANG H,et al.New class of LAGP-based solid polymer composite electrolyte for efficient and safe solid-state lithium batteries[J].ACS applied materials&interfaces,2017(9):41837-41844.
[58]HOU G,MA X,SUN Q,et al.Lithium dendrite suppression and enhanced interfacial compatibility enabled by an ex situ SEI on Li Anode for LAGP-based all-solid-state batteries[J].ACS applied materials&interfaces,2018(10):18610-18618.
[59]ZHANG J,ZHAO N,ZHANG M,et al.Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries:Dispersion of garnet nanoparticles in insulating polyethylene oxide[J].Nano energy,2016(28):447-454.
[60]YANG T,ZHENG J,CHENG Q,et al.Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers:mechanism of conductivity enhancement and role of doping and morphology[J].ACS applied materials&interfaces,2017(9):21773-21780.
[61]ZHENG J,HU Y Y.New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J].ACS applied materials&interfaces,2018(10):4113-4120.
[62]LIU W,LIU N,SUN J,et al.Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J].Nano letters,2015(15):2740-2745.
[63]Liu W,Lee S W,Lin D,et al.Enhancing Ionic Conductivity in composite polymer elelcrolytes with well-gligned ceramic nanowires[J].Nature energy,2017(2):1-7.
[64]ZHAI H,XU P,NING M,et al.A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries[J].Nano letters,2017(17):3182-3187.
[65]LIU X,PENG S,GAO S,et al.Electric-field-directed parallel alignment architecting 3D lithium-ion pathways within solid composite electrolyte[J].ACS applied materials&interfaces,2018(10):15691-15696.
[66]WANG X,ZHAI H,QIE B,et al.Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte[J].Nano energy,2019(60):205-212.
[67]HUANG Z,PANG W,LIANG P,et al.A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte:enhanced thermal and electrochemical properties[J].Journal of materials chemistry,2019(7):16425-16436.
[68]CHEN L,LI W,FAN L Z,et al.Solid-state lithium batteries:intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries[J].Advanced functional materials,2019:1901047.
[69]DU Y,YANG H,WHITELEY J M,et al.Ionic covalent organic frameworks with spiroborate linkage[J].Angewandte chemie international edition,2016(55):1737-1741.
[70]CHEN H W,TU H Y,HU C J,et al.Cationic covalent organic framework nanosheets for fast Li-ion conduction[J].Journal of the American chemical society,2018(140):896-899.
[71]HU Y,DUNLAP N,WAN S,et al.Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity[J].Journal of the American chemical society,2019(141):7518-7525.
[72]XU Q,TAO S S,JIANG Q H,et al.Ion conduction in polyelectrolyte covalent organic frameworks[J].Journal of the American chemical society,2018,140(24):7429-7432.
[73]ZHOU W D,WANG S F,LI Y T,et al.Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J].Journal of the American chemical society,2016(138):9385-9388.
[74]CAO C,LI Y,FENG Y,et al.A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for high-performance lithium-ion batteries[J].Journal of materials chemistry,2017(5):22519-22526.
[75]PARK S S,TULCHINSKY Y,DINCA M.Single-Ion Li+,Na+,and Mg2+solid electrolytes supported by a mesoporous anionic Cu-azolate metal-organic framework[J].Journal of the American chemical society,2017(139):13260-13263.
[76]LUO G G,YUAN B,GUAN T Y,et al.Synthesis of single lithium-ion conducting polymer electrolyte membrane for solid-state lithium metal batteries[J].ACS applied energy materials,2019,2(5):3028-3034.
[77]CAO C,LI Y,FENG Y,et al.A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries[J].Energy storage materials,2019(19):401-407.
[78]DONG W,ZENG X X,ZHANG X D,et al.Gradiently polymerized solid electrolyte meets with micro-/nanostructured cathode array[J].ACS applied materials&interfaces,2018(10):18005-18011.
[79]WANG C,BAI G,YANG Y,et al.A safe and efficient lithiated silicon-sulfur battery enabled by a bi-functional composite interlayer[J].Energy storage materials,2020(25):217-223.
[80]LI Y,DING F,XU Z,et al.Ambient temperature solid-state Li-battery based on high-salt-concentrated solid polymeric electrolyte[J].Journal of power sources,2018(397):95-101.
[81]DUAN H,YIN Y X,ZENG X X,et al.In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries[J].Energy storage materials,2018(10):85-91.
[82]WAN Z,LEI D,YANG W,et al.Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide(PEO)composite electrolyte and PEO cathode binder[J].Advanced functional materials,2019(29):1805301.
[83]PORCARELLI L,GERBALDI C,BELLA F,et al.Super soft all-ethylene oxide polymer electrolyte for safe allsolid lithium batteries[J].Scientific reports,2016(6):1-14.
[84]HU J,WANG W,PENG H,et al.Flexible organic-inorganic hybrid solid electrolytes formed via thiol-acrylate photopolymerization[J].Macromolecules,2017(50):1970-1980.
[85]FALCO M,CASTRO L,NAIR J R,et al.UV-cross-linked composite polymer electrolyte for high-rate,ambient temperature lithium batteries[J].ACS applied energy materials,2019(2):1600-1607.
[86]ZENG X X,YIN Y X,LI N W,et al.Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries[J].Journal of the American chemical society,2016(138):15825-15828.
[87]DUAN H,YIN Y X,SHI Y,et al.Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers[J].Journal of the American chemical society,2018(140):82-85.
[88]LITTAUER E L,TSAI K C.Anodic behavior of lithium in aqueous electrolytes:I.transient-passivation[J].Journal of the electrochemical society,1976(123):771-776.
[89]LITTAUER E L,TSAI K C.Corrosion of lithium in aqueous elelctrolytes[J].Journal of the electrochemical society,1977(124):850-855.
[90]ABRAHAM K M,JANG Z.A polymer electrolyte based rechargeable lithium/oxygen battery[J].Journal of the electrochemical society,1996,27(1):1-5
[91]PENG Z,FREUNBERGER S A,CHEN Y,et al.A reversible and higher-rate Li-O2 battery[J].Science,2012,337(6094):563-566.
[92]ZHANG H M,LI X F,ZHANG H Z.Li-S and Li-O2 batteries with high specific enegy[M].Singapore:Springer,2017.
[93]FREUNBERGER S A,CHEN Y,PENG Z,et al.Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes[J].Journal of the American chemical society,2011,133(20):8040-8047.
[94]PENG Z,FREUNBERGER S A,HARDWICK L J,et al.Oxygen reactions in a non-aqueous Li+ electrolyte[J].Angewandte chemie international edition,2011,50(28):6351-6355.
[95]LOPEZ N,GRAHAM D J,J R MGR,et al.Reversible reduction of oxygen to peroxide facilitated by molecular recognition[J].Science,2012,335(6067):450-453.
[96]CHEN Y,FREUNBERGER S A,PENG Z,et al.Li-O2 battery with a dimethylformamide electrolyte[J].Journal of the American chemical society,2012,134(18):7952-7957.
[97]WALKER W,GIORDANI V,UDDIN J,et al.A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte[J].Journal of the American chemical society,2013,135(6):2076-2079.
[98]ALLEN C J,MUKERJEE S,PLICHTA E J,et al.Oxygen electroderechargeability in an ionic liquid for the Li-Air battery[J].Journal of physical chemistry letters,2011,2(19):2420-2424.
[99]PENG Z,FREUNBERGER S A,CHEN Y,et al.A reversible and higher-rate Li-O2 battery[J].Science,2012,337(6094):563-566.
[100]LIU T,LESKES M,YU W,et al.Cycling Li-O2 batteries via LiOH formation and decomposition[J].Science,2015,350(6260):530-533.
[101]JUNG H G,HASSOUN J,PARK J B,et al.An improved high-performance lithium-air battery[J].Nature chemistry,2012,4(7):579-585.
[102]XIAO J,MEI D,LI X,et al.Hierarchically porous graphene as a lithium-air battery electrode[J].Nano letters,2011,11(11):5071-5078.
[103]KIM S,JUNG Y,LIM H S.The effect of solvent component on the discharge performance of lithium-sulfur cell containing various organic electrolytes[J].Electrochim acta,2004,50(23):889-892.
[104]SHUI J L,KARAN N K,BALASUBRAMANIAN M.Fe/N/C Composite in Li-O2 battery:studies of catalytic structure and activity toward oxygen evolution reaction[J].Journal of the American chemical society,2012,134(40):16654-16661.
[105]ZHANG J G,WANG D,WU X,et al.Ambient operation of Li/Airbatteries[J].Journal of power sources,2010,195(13):4332-4337.
[106]CROWTHER O,KEENY D,MOUREAU D M,et al.Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane[J].Journal of power sources,2012,202(1):347-351.
[107]ZHANG T,ZHOU H.From Li-O2 to Li-Air batteries:carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons,ions,and oxygen[J].Angewandte chemie international edition,2012,51(44):11062-11067.
[108]SU Y S,MANTHIRAM A.A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer[J].Chemical communications,2012(48):8817-8819.
[109]GUEON D,HWANG J T,YANG S B,et al.Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes[J].ACS nano,2018(12):226-233.
[110]LI J,JIANG Y,QIN F,et al.Magnetron-sputtering MoS2 on carbon paper and its application as interlayer for high-performance lithium sulfur batteries[J].Journal of electroanalytical chemistry,2018(823):537-544.
[111]MAIHOM T,KAEWRUANG S,PHATTHARASUPAKUN N,et al.Lithium bond impact on lithium polysulfide adsorption with functionalized carbon fiber paper interlayers for lithium-sulfur batteries[J].Journal of physical chemistry C,2018(122):7033-7040.
[112]YIN L,DOU H,WANG A,et al.A functional interlayer as a polysulfides blocking layer for high-performance lithium-sulfur batteries[J].New journal of chemistry,2018(42):1431-1436.
[113]WUTTHIPROM J,PHATTHARASUPAKUN N,SAWANGPHRUK M.Designing an interlayer of reduced graphene oxide aerogel and nitrogen-rich graphitic carbon nitride by a layer-by-layer coating for high-performance lithium sulfur batteries[J].Carbon,2018(139):943-953.
[114]YIN Y X,XIN S,GUO Y G,et al.Lithium-sulfur batteries:electrochemistry,materials,and prospects[J].Angewandte chemie international edition,2013(52):13186-13200.
[115]PARK J,YU B C,PARK J S,et al.Lithium-sulfur batteries:tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li-S battery[J].Advanced energy materials,2017(7).
[116]KUMAR G G,CHUNG S H,KUMAR T R,et al.Three-dimensional graphene-carbon nanotube-Ni hierarchical architecture as a polysulfide trap for lithium-sulfur batteries[J].ACS applied materials&interfaces,2018(10):20627-20634.
[117]MANOJA M,ASHRAF C M,JASNA M,et al.Biomass-derived,activated carbon-sulfur composite cathode with a bifunctional interlayer of functionalized carbon nanotubes for lithium-sulfur cells[J].Journal of colloid and interface science,2019(535):287-299.
[118]SUO L,HU Y S,Li H,et al.A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J].Nature Communications,2013(4):1481.
[119]赵小敏.室温钠硫电池阻燃电解液的电化学性能研究[D].太原:太原理工大学,2019.
[120]张华民.液流电池技术[M].北京:化学工业出版社,2015.
[121]温兆银.钠硫电池及其储能应用[J].上海节能,2007(02):7-10.
[122]林祖.上海硅酸盐研究所β″-Al2O3陶瓷的研究简介[J].功能材料,2004,35(1):130-131,134.
[123]沈文忠.太阳能光伏技术与应用[M].上海:上海交通大学出版社,2013.
[124]胡英瑛,温兆银,芮琨,等.钠电池的研究与开发现状[J].储能科学与技术,2013,2(2):81-90.
[125]LU X,KIRBY B W,XU W,et al.Advanced intermediate-temperature Na-S battery[J].Energy&environmental science,2013(6):299-306.
[126]LAM L T,LOUEY R.Development of ultra-battery for hybrid-electric vehicle applications[J].Journal of power sources,2006(158):1140-1148.
[127]BULLOCK K R.Carbon reactions and effects on valve-regulated lead-acid(vrla)battery cycle life in high-rate,partial state-of-charge cycling[J].Journal of power sources,2010,195(14):4513-4519.
[128]BODEN D P,LOOSEMORE D V,SPENCE M A,et al.Optimization studies of carbon additives to negative active material for the purpose of extending the life of vrla batteries in high-rate partial-state-of-charge operation[J],Journal of power sources,2010(195):4470-4493.
[129]MOSELEY P T,NELSON R F,HOLLENKAMP A F.The role of carbon in valve-regulated lead-acid battery technology [J].Journal of power sources,2006,157(1):3-10.
[130]SHIOMI M,FUNATO T,NAKAMURA K,et al.Effects of carbon in negative plates on cycle life performance of valve-regulated lead acid batteries[J].Journal of power sources,1997,6(12):147-152.
[131]PAVLOV D,ROGACHEV T,NIKOLOV P,et al.Mechanism of action of electrochemically active carbons on the processes that take place at the negative plates of lead-acid batteries[J].Journal of power sources,2009(191):8-75.
[132]FERNANDEZ M,VALENCIANO J,TRINIDAD F,et al.The use of activated carbon and graphite for the development of lead-acid batteries for hybrid vehicle applications[J].Journal of power sources,2010(195):4458-4469.
[133]TASHIMA D,KUROSAWATSU K,TANIGUCHI M,et al.Basic characteristics of electric double layer capacitor mixing ketjen black as conductive filer[J].Journal of power sources,2008(165):1-8.
[134]LOTA G,CENTENO T A,FRACKOWIAK E F,et al.Improvement of the structual and chemical properties of a commercial activated carbon forits application in electrochemical capacitors[J].Electrochimica acta,2008(53):2210-2216.
[135]陶占良,陈军.铅碳电池储能技术[J].储能科学与技术,2015,6(4):546-555.
[1] 1mile=1609.344m.