参考文献
[1] 中华人民共和国国家发展和改革委员会. 可再生能源发展“十三五”规划[R]. 北京: 中华人民共和国国家发展和改革委员会,2016.
[2] 刘振亚. 全球能源互联网[M]. 北京: 中国电力出版社,2015.
[3] HART D G. Using AMI to realize the smart grid[C] //2008 IEEE Power and Energy Society General Meeting, July 20-24, 2008, Pittsburgh, PA, USA: IEEE, 2008:1-2.
[4] Standards Coordinating Committee 21. IEEE Std 2030-2011, IEEE Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation with the Electric Power System (EPS), End-Use Applications, and Loads[S]. New York: IEEE,2011:126.
[5] FARHANGI H. The path of the smart grid[J]. IEEE Power & Energy Magazine, 2010, 8(1):18-28.
[6] ROY S, NORDELL D, VENKATA S S. Lines of communication:architecture and solutions for linking the elements of the smart distribution grid[J]. IEEE Power & Energy Magazine, 2011, 9(5):65-73.
[7] GÓMEZ-CUBA F, ASOREY-CACHEDA R, GONZÁLEZ-CASTAÑO F J. Smart grid last-mile communications model and its application to the study of leased broadband wired-access[J]. IEEE Transactions on Smart Grid, 2013, 4(1):5-12.
[8] HUANG J F, WANG H G, QIAN Y. Smart grid communications in challenging environments[C]// 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), Nov. 5-8, 2012,Tainan, Taiwan: IEEE,2013:552-557.
[9] GUNGOR V C, SAHIN D, KOCAK T, et al. Smart grid technologies: communication technologies and standards[J]. IEEE Transactions on Industrial Informatics, 2011,7(4):529-539.
[10] ABDRABOU A. A wireless communication architecture for smart grid distribution networks[J]. IEEE Systems Journal, 2016,10(1):251-261.
[11] 周静,胡紫巍,孙媛媛,等. 智能电网用户侧通信网络及技术挑战分析[J]. 中国电力,2016, 49(3):115-118.
[12] 崔正杰,刘南杰,倪振华,等. 基于协作传输的智能电网数据通信系统设计[J]. 计算机技术与发展,2015, 25(7):91-95.
[13] 陈璠. 基于WAVE标准的车联网IP通信优化及性能分析[D]. 大连: 大连理工大学,2013.
[14] LIYANAGE K M, YOKOYAMA A, OTA Y, et al. Impacts of communication delay on the performance of a control scheme to minimize power fluctuations introduced by renewable generation under varying V2G vehicle pool size[C]//2010 First IEEE International Conference on Smart Grid Communications, Oct. 4-6, 2010, Gaithersburg. MD, USA: IEEE, 2010:85-90.
[15] YANG Z Y, YU S C, LOU W J, et al. P2: privacy-preserving communication and precise reward architecture for V2G networks in smart grid[J]. IEEE Transactions on Smart Grid, 2011, 2(4):697-706.
[16] GUO H Q, WU Y D, BAO F, et al. UBAPV2G: a unique batch authentication protocol for vehicle-to-grid communications[J]. IEEE Transactions on Smart Grid, 2011, 2(4):707-714.
[17] ZOUNTOURIDOU E, KIOKES G, HATZIARGYRIOU N D, et al. An evaluation study of wireless access technologies for V2G communications[C]//2011 16th International Conference on Intelligent System Application to Power Systems(ISAP), Sept. 25-28, 2011, Hersonissos, Greece: IEEE, 2011:1-7.
[18] SANTOSHKUMAR, UDAY KUMAR R Y. Performance analysis of LTE protocol for EV to EV communication in vehicle-to-grid (V2G)[C]//Proceedings of the IEEE 28th Canadian Conference on Electrical and Computer Engineering, May 3-6, 2015, Halifax, Canada: IEEE, 2015:1567-1571.
[19] NASRALLAH Y Y, AL-ANBAGI I S, MOUFTAH H T. Mobility impact on the performance of electric vehicle-to-grid communications in smart grid environment[C]//Proceedings of 2015 IEEE Symposium on Computers and Communication(ISCC), July 6-9, 2015, Larnaca, Cyprus: IEEE, 2016:764-769.
[20] WANG H Q, QIN B B, WU Q H, et al. TPP: traceable privacy-preserving communication and precise reward for vehicle-to grid networks in smart grid[J]. IEEE Transaction on Information Forensics and Security, 2015, 10(11):2340-2351.
[21] KIM Y, BAE J N, KIM J Y. Performance of power line communication systems with noise reduction scheme for smart grid applications[J], IEEE Transactions on Consumer Electronics, 2011, 57(1):46-52.
[22] 范庆彬,孙健淞,牟红光. DSRC技术及其通信机制的研究[J]. 电信科学,2010, 26(8):99-101.
[23] 丁德强,柯熙政. 基于VLC的路车通信系统研究[C]//第六届全国信息获取与处理学术会议论文集(3).北京:《仪器仪表学报》杂志社,2008:795-798.
[24] 曹培. 低碳经济下的智能需求侧管理系统研究[D]. 杭州: 浙江大学,2012.
[25] 方丽丽,桂轩,宋畅. 需求侧管理的低碳电网规划研究[J]. 通讯世界,2017 (11):186-187.
[26] 宋毅,欧阳邵杰,王旭阳,等. 考虑需求侧资源的新型电网规划模式[J]. 电力建设,2013, 34(11):12-16.
[27] 张小敏,董开松,赵耀,等. 考虑需求侧管理的微电网调度模型与策略[J]. 水电能源科学,2015,33(8): 191-194,143.
[28] 邱晓燕,沙熠,宁雪姣,等. 大规模风电接入的智能电网多类型柔性负荷分级优化调度[J]. 高电压技术,2016, 42(7): 2084-2091.
[29] 艾欣,刘晓. 基于需求响应的风电消纳机会约束模型研究[J]. 华北电力大学学报(自然科学版),2011, 38(3):17-22.
[30] YANG N, WANG B, LIU D, et al. Large-scale wind power stochastic optimization scheduling method considering flexible load peaking[J]. Transactions of China Electrotechincal Society, 2013, 28(11):231-238.
[31] XUE X, WANG S W, YAN C C, et al. A fast chiller power demand response control strategy for buildings connected to smart grid[J]. Applied Energy, 2015,137:77-87.
[32] GODDARD G S, KLOSE J, BACKHAUS S. Model development and identification for fast demand response in commercial HVAC systems[J]. IEEE Transactions on Smart Grid, 2014, 5(4):2084-2092.
[33] LI X W, MALKAWI A. Multi-objective optimization for thermal mass model predictive control in small and medium size commercial buildings under summer weather conditions[J]. Energy, 2016,112:1194-1206.
[34] University of Michigan. U.S.-China Clean energy Research Center.[EB/OL].[2015-03-29].http://cerc-cvc. research. umich.edu/.
[35] KHALIGH A, LI Z H. Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art[J]. IEEE Transactions on Vehicular Technology, 2010, 59(6):2806-2814.
[36] HILL D M, AGARWAL A S, AYELLO F. Fleet operator risks for using fleets for V2G regulation[J]. Energy Policy, 2012, 41(2):221-231.
[37] USTUN T S, OZANSOY C R, ZAYEGH A. Implementing vehicle-to-grid (V2G) technology with IEC 61850-7-420 [J]. IEEE Transactions on Smart Grid, 2013, 4(2):1180-1187.
[38] XING Y J, MA E W M, TSUI K L, et al. Battery management systems in electric and hybrid vehicles[J]. Energies, 2011, 4(11):1840-1857.
[39] LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles [J]. Journal of Power Sources, 2013, 226:272-288.
[40] BISHOP J D K, AXON C J, BONILLA D, et al. Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV[J]. Applied Energy, 2013, 111:206-218.
[41] VISWANATHAN V V, KINTNER-MEYER M C W. Second use of transportation batteries: maximizing the value of batteries for transportation and grid services[J]. IEEE Transactions on Vehicular Technology, 2011, 60(7):2963-2970.
[42] AGARWAL V, UTHAICHANA K, DECARLO R A, et al. Development and validation of a battery model useful for discharging and charging power control and lifetime estimation[J]. IEEE Transactions on Energy Conversion, 2010, 25(3):821-835.
[43] KUTLUAY K, CADIRCI Y, OZKAZANC Y S, et al. A new online state-of-charge estimation and monitoring system for sealed lead-acid batteries in telecommunication power supplies[J]. IEEE Transactions on Industrial Electronics, 2005, 52(5):1315-1327.
[44] LI H Y, JIA Y L, ZHANG D, et al. Application of electric vehicle battery intelligent monitoring and management system[C]//Proceedings of the IEEE Conference and Expo Transportation Electrification Asia-Pacific, Aug.31-Sept.3, 2014, Beijing, China: IEEE, 2014:1-5.
[45] 戴海峰,周艳新,顾伟军,等. 电动汽车用动力锂离子电池寿命问题研究综述[J]. 电源技术,2014, 38(10): 1952-1954,1982.
[46] 连湛伟,石欣,克潇,等. 电动汽车充换电站动力电池全寿命周期在线检测管理系统[J]. 电力系统保护与控制,2014, 42(12):137-142.
[47] 麻友良,陈全世,齐占宁. 电动汽车用电池SOC定义与检测方法[J]. 清华大学学报(自然科学版), 2001, 41(11):95-97.
[48] LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226:272-288.
[49] HE H W, ZHANG X W, XIONG R, et al. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles[J]. Energy, 2012,39(1):310-318.
[50] XIONG R, GONG X Z, MI C C, et al. A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter[J]. Journal of Power Sources, 2013, 243(1):805-816.
[51] 何洪文,熊瑞. 基于滑模观测器的锂离子动力电池荷电状态估计[J]. 吉林大学学报(工学版), 2011, 41(3): 623-628.
[52] LI C A, JOHNSON R B, SVOBODA A J. A new unit commitment method[J]. IEEE Transactions on Power Systems, 1997,12(1):113-119.
[53] GARVER L L. Power generation scheduling by integer programming-development of theory[J]. Transactions of the American Institute of Electrical Engineers PartⅢ:Power Apparatus and Systems, 1962, 81(3):730-734.
[54] 娄素华,卢斯煜,吴耀武,等. 低碳电力系统规划与运行优化研究综述[J]. 电网技术,2013(6):1483-1490.
[55] LI T, SHAHIDEHPOUR M. Dynamic ramping in unit commitment[J]. IEEE Transactions on Power Systems, 2007, 22(3):1379-1381.
[56] 杨艳红,裴玮,屈慧,等. 基于广义Benders分解的分布式热电联供机组规划方法[J]. 电力系统自动化,2014, 38(12):27-33.
[57] 张舒,胡泽春,宋永华,等. 基于网损因子迭代的安全约束机组组合算法[J]. 中国电机工程学报,2012, 32(7):76-82.
[58] STREIFFERT D, PHILBRICK R, OTT A. A mixed integer programming solution for market clearing and reliability analysis[C]//Proceedings of IEEE Power Engineering Society General Meeting, June 16, 2005, San Francisco, CA, USA: IEEE, 2005:1-8.
[59] CUI H, CHEN Z, ZHOU J Y, et al. The design and implementation about short-time generation scheduling system on the basis of SCUC&SCED[C]// 2010 International Conference on Power System Technology (POWERCON). Hangzhou: IEEE Power & Energy Society, Oct. 24-28, 2010, Hangzhou, China: IEEE, 2010:1-8.
[60] JOHNSON R C, HAPP H H, WRIGHT W J. Large scale hydro-thermal unit commitment method and results[J]. IEEE Transactions on Power Apparatus and Systems, 1971, PAS-90(3): 1373-1384.
[61] SHOULTS R R, CHANG S K, HELMICK S, et al. A practical approach to unit commitment, economic dispatch and savings allocation for multiple-area pool operation with import/export constraints[J]. IEEE Transactions on Power Apparatus and Systems, 1980, PAS-99(2):625-635.
[62] LEE F N. Short-term unit commitment--a new method[J]. IEEE Transactions on Power Systems, 1988, 3(2):421-428.
[63] PADHY N P. Unit commitment – a bibliographical survey[J]. IEEE Transactions on Power Systems, 2004, 19(2):1196-1205.
[64] OUYANG Z, SHAHIDEHPOUR M. An intelligent dynamic programming for unit commitment application[J]. IEEE Transactions on Power Systems, 1991, 6(3):1203-1209.
[65] HABIBOLLAHZADEH H, BUBENKO J A. Application of decomposition techniques to short-term operation planning of hydrothermal power system[J]. IEEE Transactions on Power Systems, 1986, 1(1):41-47.
[66] DILLON T S, EDWIN K W, KOCHS H D, et al. Integer programming approach to the problem of optimal unit commitment with probabilistic reserve determination[J]. IEEE Transactions on Power Apparatus and Systems, 1978, PAS - 97(6):2154-2166.
[67] BERTSEKAS D P, LAUER G S, SANDELL N R, et al. Optimal short-term scheduling of large-scale power systems[J]. IEEE Transactions on Automatic Control, 1983, 28(1):1-11.
[68] VIRMANI S, ADRIAN E C, IMHOF K, et al. Implementation of a lagrangian relaxation based unit commitment problem[J]. IEEE Transactions on Power Systems, 1989, 4(4):1373-1380.
[69] RAJAN C C A, MOHAN M R. An evolutionary programming-based tabu search method for solving the unit commitment problem[J]. IEEE Transactions on Power Systems, 2004, 19(1):577-585.
[70] ZHUANG F, GALIANA F D. Unit commitment by simulated annealing[J]. IEEE Transactions on Power Systems, 1990, 5(1):311-318.
[71] 周玮,彭昱,孙辉,等. 含风电场的电力系统动态经济调度[J]. 中国电机工程学报,2009, 29(25):13-18.
[72] 刘德伟,郭剑波,黄越辉,等. 基于风电功率概率预测和运行风险约束的含风电场电力系统动态经济调度[J]. 中国电机工程学报,2013, 33(16):9-15.
[73] LIANG R H, LIAO J H. A fuzzy-optimization approach for generation scheduling with wind and solar energy systems [J]. IEEE Transactions on Power Systems, 2007, 22(4):1665-1674.
[74] 别朝红,胡国伟,谢海鹏,等. 考虑需求响应的含风电电力系统的优化调度[J].电力系统自动化,2014, 38(13):115-120.
[75] 徐帆,王颖,杨建平,等. 考虑电网安全的风电火电协调优化调度模型及其求解[J]. 电力系统自动化,2014, 38(21):114-120.
[76] 郭晓蕊,王珂,杨胜春,等. 计及风电时空互补特性的互联电网有功调度与控制方案[J]. 电力系统保护与控制,2014, 42(21):139-144.
[77] ZHENG Q P, WANG J H, LIU A L. Stochastic optimization for unit commitment--a review[J]. IEEE Transactions on Power Systems, 2015, 30(4):1913-1924.
[78] TUOHY A, MEIBOM P, DENNY E, et al. Unit commitment for systems with significant wind penetration[J]. IEEE Transactions on Power Systems, 2009, 24(2):592-601.
[79] JIANG R W, WANG J H, GUAN Y P. Robust unit commitment with wind power andpumped storage hydro[J]. IEEE Transactions on Power Systems, 2012, 27(2):800-810.
[80] NASROLAHPOUR E, GHASEMI H. A stochastic security constrained unit commitment model for reconfigurable networks with high wind power penetration[J]. Electric Power Systems Research, 2015, 121:341-350.
[81] WU K H, ZHOU H, AN S C, et al. Optimal coordinate operation control for wind-photovoltaic-battery storage power-generation units[J]. Energy Conversion and Management, 2015, 90:466-475.
[82] WU C Y, MOHSENIAN-RAD H, HUANG J W. Wind power integration via aggregator-consumer coordination: a game theoretic approach[C]// Proceedings of IEEE PES Innovative Smart Grid Technologies, Jan.16-20, 2012, Washington DC, USA:IEEE, 2012:1-6.
[83] 王锡凡,肖云鹏,王秀丽. 新形势下电力系统供需互动问题研究及分析[J]. 中国电机工程学报,2014, 34(29):5018-5028.
[84] KWANG H G, KIM J O. Optimal combined scheduling of generation and demand response with demand resource constraints[J]. Applied Energy, 2012, 96:161-170.
[85] DEHGHANPOUR K, AFSHARNIA S. Electrical demand side contribution to frequency control in power systems: a review on technical aspects [J]. Renewable and Sustainable Energy Reviews, 2015, 41:1267-1276.
[86] HU J J, MORAIS H, SOUSA T, et al. Electric vehicle fleet management in smart grids: a review of services, optimization and control aspects[J]. Renewable and Sustainable Energy Reviews, 2016,56:1207-1226.
[87] 陈彬,王业磊,许昭,等. 计及电动汽车充电调度可行域的电力系统机组最优组合[J]. 华北电力大学学报,2014, 41(1):38-44.
[88] MADZHAROV D, DELARUE E, D’HAESELEER W. Integrating electric vehicles as flexible load in unit commitment modeling[J]. Energy, 2014, 65:285-294.
[89] SABER A Y, VENAYAGAMOORTHY G K. Intelligent unit commitment with vehicle-to-grid--a cost emission optimization[J]. Journal of Power Sources, 2010, 195(3):898-911.
[90] 刘晓,艾欣,杨俊. 考虑未来碳排放交易的需求侧备用竞价与调度模式设计[J]. 电力系统自动化,2011, 35(2):38-42.
[91] 张谦,刘超,周林,等. 计及可入网电动汽车最优时空分布的双层经济调度模型[J]. 电力系统自动化,2014, 38(20):40-45.
[92] 曹一家,刘易珠,阙凌燕,等. 换电站与电网协调的多目标双层实时充放电调度方法[J]. 电力自动化设备,2015, 35(4):1-7.
[93] MOHSENIAN-RAD A H, WONG V W S, JATSKEVICH J, et al. Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid[J]. IEEE Transactions on Smart Grid, 2010,1(3):320-331.
[94] 汪春,吴可,张祥文,等. 规模化电动汽车和风电协同调度的机组组合问题研究[J]. 电力系统保护与控制,2015, 43(11):41-48.
[95] SHAO C C, WANG X F, Wang X L, et al. Cooperative dispatch of wind generation and electric vehicles with battery storage capacity constraints in SCUC[J]. IEEE Transactions on Smart Grid, 2014, 5(5):2219-2226.
[96] 张晓花,谢俊,赵晋泉,等. 考虑风电和电动汽车等不确定性负荷的电力系统节能减排调度[J]. 高电压技术,2015, 41(7):2408-2414.
[97] 李正烁,孙宏斌,郭庆来,等. 计及碳排放的输电网侧“风-车协调”研究[J]. 中国电机工程学报,2012, 32(10):41-48.
[98] 张宁,胡兆光,周渝慧,等. 考虑需求侧低碳资源的新型模糊双目标机组组合模型 [J]. 电力系统自动化,2014, 38(17):25-30.
[99] 杨甲甲,赵俊华,文福拴,等. 含电动汽车和风电机组的虚拟发电厂竞价策略[J]. 电力系统自动化,2014, 38(13):92-102.
[100] LIU H T, JI Y, ZHUANG H D, et al. Multi-objective dynamic economic dispatch of microgrid systems including vehicle-to-grid [J]. Energies, 2015, 8(5):4476-4495.
[101] 司方远. 基于能量枢纽的能源互联网荷源协调优化策略研究[D]. 沈阳:东北大学,2017.
[102] ADAM A, FRAGA E, BRETT D J L. Options for residential building services design using fuel cell based micro-CHP and the potential for heat integration[J]. Applied Energy, 2015,138:685-694.
[103] BARATI F, SEIFI H, SEPASIAN M S, et al. Multi-period integrated framework of generation, transmission, and natural gas grid expansion planning for large-scale systems[J]. IEEE Transactions on Power Systems, 2015, 30(5): 2527-2537.
[104] 张栋,闫锋,欧阳欣. 中俄东线天然气管道运行保障关键技术[J]. 油气储运,2020, 39(8):861-870.
[105] LEI Y, WANG D, JIA H J, et al. Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy[J]. Applied Energy, 2020, 276:115395.
[106] YANG H M, XIONG T L, QIU J, et al. Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response[J]. Applied Energy, 2016, 167:353-365.
[107] 孙鹏,滕云,冷欧阳,等. 考虑供热系统多重热惯性的电热联合系统协调优化[J]. 中国电机工程学报,2020, 40(19):6059-6070.
[108] 张刚,张峰,张利,等. 考虑碳排放交易的日前调度双阶段鲁棒优化模型[J]. 中国电机工程学报,2018, 38(18):5490-5499.
[109] 楚晓琳,杨东. 不确定因素下建筑集群冷热电联供系统多目标优化[J]. 控制与决策,2020,35(1):195-204.
[110] SI F Y, WAMG J K, HAN Y H, et al. Cost-efficient multi-energy management with flexible complementarity strategy for energy internet[J]. Applied Energy, 2018, 231:803-815.
[111] 郑超铭,黄博南,王子心,等. 计及网络传输损耗的电热综合能源系统多目标优化调度[J]. 电网技术,2020, 44(1):141-149.