电力拖动自动控制系统(第3版)
上QQ阅读APP看书,第一时间看更新

3.2 单闭环直流调速系统的稳态分析

对于图2-32所示为转速单闭环直流调速系统的动态结构图而言,当系统处于稳态运行时,各环节传递函数的分子、分母中,带有s的项均为零,从而得到图3-2所示的转速单闭环直流调速系统的稳态结构图。图3-2中,ASR为转速调节器;符号为用电压值表示的转速给定信号nUn为用电压值表示的转速反馈信号n

3.2.1 ASR为比例调节器时的转速单闭环直流调速系统稳态分析

1.闭环系统的静态方程

依据图3-2a所示的稳态结构图,当ASR为比例调节器时,转速负反馈单闭环直流调速系统中各环节的稳态关系如下:

图3-2 采用比例调节器的转速单闭环调速系统的稳态结构框图

a)闭环调速系统稳态结构图 b)只考虑转速给定作用时的闭环系统稳态结构图

c)只考虑负载扰动作用时的闭环系统稳态结构图

① 输入比较环节

② 比例调节器

③ 电力电子变换器

④ 直流调速系统的开环机械特性方程式

⑤ 测速反馈环节

各式中,Kp为比例调节器的比例系数;Ks为电力电子变换器的变换系数;α为转速反馈系数(V·min/r);Ud0为电力电子变换器理想空载输出电压(V)。

将上述5个关系式中消去中间变量,整理后,即得转速负反馈闭环直流调速系统的稳态特性方程式(或称静态特性方程式)

式中,K=KpKsα/Ce为闭环系统的开环放大系数,即开环增益;n0cl=/[Ce(1+K)]为闭环系统的理想空载转速;Δncl=RId/Ce(1+K)为闭环系统的稳态速降。

2.闭环调速系统的稳态分析和计算

通过比较闭环系统静特性方程式与其开环系统机械特性方程式,可以看到闭环控制的突出优点。

(1)稳态速降

转速开环系统的稳态速降,把图3-2a所示的转速闭环系统的反馈回路在调节器反馈输入端处断开,就得到了开环系统,式(3-12)所表示的机械特性方程式可写成

式中,n0op=VpKsUct/Ce为开环系统的理想空载转速;Δnop=RId/Ce为开环系统的稳态速降。

转速闭环系统的稳态速降为

式(3-16)表明,转速闭环后将使同一负载下稳态速降降低到开环系统的1/(1+K)。式(3-16)还说明了,ASR为比例调节器的单闭环直流调速系统是有静差调速系统,静差大小为Δnclnop/(1+K),并且,静差Δncl只能减小而不能消除,这是因为系统的开环放大系数K不可能为无穷大(K≠∞)。

(2)调速范围

如果电动机最高转速是额定转速nN,对静差率要求为s,则闭环系统的调速范围为

式中,Dop=

式(3-17)表明,如果开环/闭环系统所要求的静差率相同,则闭环系统调速范围为开环系统的(1+K)倍。由此可见,提高闭环系统的开环放大系数是减小系统静态速降、扩大调速范围的有效措施。系统的开环放大系数越大,静态速降就越小,在同样静差率下,其调速范围就越宽。

(3)稳态特性计算举例

例3-3】某一转速单闭环直流调速系统,已知:

① 直流电动机技术数据:PdN=45kW,UdN=220V,IdN=226A,nN=1750r/min,电枢电阻RD=0.04Ω。

② V-M系统电枢电路总电阻R=0.1Ω。

③ 晶闸管变流装置的移相控制信号Uct在0~7V范围内调节时,对应的整流电压Ud在0~250V范围内变化。

④ 转速反馈系数α=0.006V·min/r。

⑤ 设计要求的稳态调速指标:D=10;s=0.05。

根据给出的技术数据,对系统进行稳态参数计算。

:1)为满足设计要求的静态指标,由式(3-17)得出满足要求的稳态速降

2)根据要求的静态速降,确定系统的开环放大系数K

因为

所以

其中

所以

3)根据系统要求的开环放大系数K来确定比例调节器的比例系数Kp

因为

所以

式中,触发器及晶闸管变流装置的电压放大系数Ks

所以

计算结果表明,只要调节器的比例系数Kp≥11.36,闭环系统就能够满足所需要的稳态性能指标。

3.开环系统机械特性及闭环系统稳态特性的关系

图3-3中,设原始工作点为A,负载电流为IL1,当负载增大到IL2时,开环系统的转速必然降到A点所对应的A′点,闭环后,由于反馈调节作用,电压可升到Ud02,使工作点变成B。这样,在闭环系统中,每增加一点儿负载,就相应提高一点儿电枢电压,因而就改换了一条机械特性。闭环系统的稳态特性就是这样在许多开环机械特性上各取一个相应的工作点,如图3-3中的ABCD等再由这些工作点连接而形成的。

图3-3 闭环系统的稳态特性与开环机械特性比较

①~④—系统开环系统机械特性 ⑤—闭环系统稳态特性

由闭环系统稳态特性曲线绘制过程可以看出,闭环稳态特性与开环机械特性相比硬度大大提高,其根本原因是闭环系统能够减少稳态速降,它能随着负载的变化而改变电枢电压,以补偿电枢电路电阻电压降的变化。

当闭环调速系统选用比例调节器时,一般称为有静差系统。其调节器输出的控制电压Uct的大小与转速偏差电压ΔUn=-Un成正比。如果偏差ΔUn为零,则控制信号Uct为零(即不能产生控制作用),因而使系统不能工作。

通过静特性分析看出,闭环调速系统的开环放大系数K值越大,其稳态特性就越硬,稳态速降就越小。在保证所要求的静差率下,其系统的调速范围就越大。总之,转速闭环控制,改善了系统的稳态性能。但是有静差系统的开环放大系数K值的大小受到系统稳定性的制约,即系统开环放大系数K过大将导致系统不稳定,因此有静差调速系统在稳态参数计算结束之后,必须进行稳定性校验,这是不可忽视的。

3.2.2 ASR为PI调节器时的转速单闭环直流调速系统的稳态分析

1.稳态结构框图

如果图3-2a中的转速调节器ASR采用比例积分(PI)调节器,就得到了图3-4所示的ASR为比例积分调节器时的单闭环直流调速系统的稳态结构框图。需要指出,稳态情况下,PI调节器只能用其输出特性来表示它的比例积分作用。

图3-4 ASR采用PI调节器时的转速单闭环直流调速系统的稳态结构框图

2.稳态特性方程

当系统达到稳态时,有ΔUn≈0,即=Un=αn,于是可知,闭环系统的稳态速降近似为Δncl≈0,因而有

式中,α为转速反馈系数(V·min/r),它的值可由下式确定:

式中,nmax为电动机最高转速(r/min);为对应nmax的最大给定电压(V)。

3.稳态特性曲线

因为采用PI调节器的单闭环直流调速系统,在稳态时ΔUn=0(对应Δn=0),所以根据式(3-18)求出n0点。在理想情况下,由n0点可以画出一条平行于坐标横轴的平直的静态特性曲线,如图3-5中虚线所示。实际上开环放大系数不可能无穷大,因此采用PI调节器的转速单闭环直流调速系统实际上的稳态特性曲线并非为水平线,而是有一定倾斜,如图3-5实线所示。

图3-5 采用PI调节器的转速单闭环调速系统稳态特性曲线