电动车辆能量转换与回收技术(第2版)
上QQ阅读APP看书,第一时间看更新

参考文献

[1]BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. LiO2 and LiS batteries with high energy storage [J]. Nature Mater, 2012(11):19-29.

[2]QIN Y P, ZHUANG Q C, SHI Y L, et al. Methods on investigating properties of electrode/electrolyte interfaces in lithiumion batteries [J]. Prog Chem, 2011(23): 390-400.

[3]WU X L, LIU Q, GUO Y G, et al. Superior storage performance of carbon nanosprings as anode materials for lithiumion batteries [J]. Electrochem commun, 2009(11): 1468-1471.

[4]BRUCE P G, SCROSATI B, Tarascon J M. Nanomaterials for rechargeable lithium batteries [J]. Angew Chem Int Ed, 2008(47): 2930-2946.

[5]ARMAND M, TARASCON J M. Building better batteries [J]. Nature, 2008(451):652-657.

[6]NAM S, CHUNG H, LO Y. Electrical wind force-driven and dislocation-templated amorphization in phase-change nano wires [J]. Science, 2012(336):1561-1566.

[7]LI H, SHI L, WANG Q, et al. Nano-alloy anode for lithium ion batteries [J]. Solid State Ionics, 2002(148): 247-258.

[8]VALENTINE S V. Emerging symbiosis: renewable energy and energy security [J]. Renew Sustain Energy Rev, 2011(15): 4572-4578.

[9]JOHANSSON B. A broadened typology on energy and security [J]. Energy, 2013(53):199-205.

[10]SUN Y, CHEN Z, NOH H, et al., Nanostructured high-energy cathode materials foradvanced lithium batteries [J]. Nature Mater, 2012(11):942-947.

[11]ZHU H, Qin X, SUN X, et al. Rocking-chair configuration in ultrathin lithium vanadate-graphene hybrid nanosheets for electrical modulation [J]. Sci. Rep, 2013(3):1246-1253.

[12]CAO F, GUO Y, Wan L. Better lithiumion batteries with nanocable-like electrode materials [J]. Energ Environ Sci, 2011(4):1634-1642.

[13]PARK O, CHO Y, LEE S, et al. Who will drive electric vehicles, olivine or spinel [J]. Energ Environ Sci, 2011(4):1621-1633.

[14]CHUNG S, CHOI S, LEE S, et al. Distinct configurations of antisite defects in ordered metal phosphates:comparison between LiMnPO4 and LiFePO4 [J]. Phys Rev Lett, 2012(108):195501-195506.

[15]HUANG Y, ZHONG L, WANG C, et al. In situ observation of the electrochemical lithiation of asingle SnO2 nanowire electrode [J]. Science, 2012(330):1515-1520.

[16]EBNER M, MARONE F, STAMPANONI M, et al. Visualization and quantificationof electrochemical and mechanical degradation in li ion batteries [J]. Science, 2013(342):716-719.

[17]GE M, RONG J, FANG X, et al. Porous doped silicon nanowires forlithium ion battery anode with long cycle life [J]. Nano Lett, 2012(12): 2318-2323.

[18]VÄYRYNEN A, SALMINEN J. Lithium ion battery production [J]. Thermo dynamics, 2012(46):80-85.

[19]KRIVANEK O L, CHISHOLM M F, NICOLOSI V, et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy [J]. Nature, 2010(464):571-574.

[20]AERT S V, K BATENBURG J, ROSSELL M D, et al. Three-dimensional atomic imaging of crystalline nanoparticles [J]. Nature, 2011(470):374-377.

[21]IBRAHIM H, ILINCA A, PERRON J. Energy storage systems-characteristics andcomparisons [J]. Renew and Sustain Energy Rev, 2007(12): 1221-1250.

[22]LI H, WANG Z X, CHEN L Q, et al. Research on advanced materials for Li-ion batteries [J]. Adv Mater, 2009(21): 4593-4607.

[23]JUNG H G, HASSOUN J, PARK J B, et al. An improved high-performance lithium-Air battery [J]. Nat Chem, 2012(4): 579-585.

[24]AKIYAMA Y, SODAYE H, SHIBAHARA Y J, et al. Study on degradation process of polymer electrolyte by solution analysis [J]. J Power Sources, 2010(195): 5915-5921.

[25]SUENAGA K, KOSHINO M. Atom-by-atom spectroscopy at graphene edge [J]. Nature, 2010(468): 1088-1090.

[26]JI X, LEE K, NAZAR L. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries [J]. Nat Mater, 2009 (8): 500-506.

[27]WU G, MORE K, JOHNSTON C, et al. High performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt [J]. Science, 2011(332):443-447.

[28]SASAKI T, UKYO Y, NOVÁK P. Memory effect in a lithiumion battery [J]. Nat Mater, 2013(16): 3623-3630.

[29]ZHANG H, YU X, BRAUN P. Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes [J]. Nat Nanotechnol, 2011(6): 1-5.

[30]YANG R S, QIN Y, DAI L M, et al. Flexible charge-pump for power generation using laterally packaged piezoelectric-wires [J]. Nat Nanotechnol, 2009(4):34-39.

[31]PARK M H, KIM M G, KIM K J, et al. Silicon nanotube battery anodes [J]. Nano Lett, 2009(9): 3844-3847.

[32]TABERNA L, MITRA S, POIZOT P, et al. High ratecapabilities Fe3O4-based Cu nano-architecturedelectrodes for lithiumionbattery applications [J]. Nature Mater, 2006(5):567-573.

[33]KANG B, CEDER G. Battery materials for ultrafast charging and discharging [J]. Nature, 2009(458):190-193.

[34]CHUNG S, BLOKING J, CHIANG Y. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Mater, 2002(1):123-128.

[35]KUSHIMA A, LIU X, ZHU G, et al. Leapfrog cracking and nanoamorphization of ZnOnanowires during in Situ electrochemical lithiation [J]. Nano Lett, 2011(11):4535-4541.

[36]KANG K, MENG Y, BREGER J, et al. Electrodes with highpower and high capacity for rechargeable lithium batteries [J]. Science, 2006(311): 977-980.

[37]ARICO A, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Mater, 2005(4): 366-377.

[38]CUI L, YANG Y, HSU C, et al. Carbon-silicon core-shell nanowires ashigh capacity electrode for lithium ion batteries [J]. Nano Lett, 2009(9): 3370-3374.

[39]KIM J, MYUNG S, SUN Y. Molten salt synthesis of LiNi0. 5Mn1. 5O4spinel for 5V class cathode material of Li-ion secondary battery [J]. Electrochim Acta, 2004(49): 219-227.

[40]GUO J, WANG C. A polymer scaffold binder structure for high capacitysilicon anode of lithiumion battery [J]. Chem commun, 2010(46): 1428-1430.

[41]REDDY A, SHAIJUMON M, GOWDA S, et al. CoaxialMnO2/carbon nanotube array electrodes for high-performance lithiumbatteries [J]. Nano Lett, 2009(9): 1002-1006.

[42]FISCHER A, PETTIGREW K, ROLISON D, et al. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbonstructures via self-limiting electroless deposition: implications forelectrochemical capacitors [J]. Nano Lett, 2007(7): 281-286.

[43]WANG Z, FIERKE M, STEIN A. Porous carbon/tin (IV) oxide monoliths asanodes for lithiumion batteries [J]. J Electrochem Soc, 2008(155): A658-A663.

[44]ERGANG N, LYTLE J, YAN H, et al. Effect of a macropore structureon cycling rates of LiCoO2 [J]. Electrochem Soc, 2005(152): A1989-A1995.

[45]SAKAMOTO J, DUNN B. Hierarchical battery electrodes based on invertedopal structures [J]. J Mater. Chem, 2002(12):2859-2861.

[46]STEPHENSON D, HARTMAN E, HARB J, et al. R Modeling of particle-particle interactions in porous cathodes for lithiumion batteries [J]. J Electrochem Soc, 2007(154): A1146-A1155.

[47]HŸTCH M J, HOUDELLIER F, HÜE F, et al. Nanoscale holographic interferometry for strain measurements in electronic devices [J]. Nature, 2008(453): 1086-1089.

[48]HYTCH M J, HOUDELLIER F, HUE F, et al, Dark-field electron holography for the measurement of geometric phase [J]. Ultramicroscopy, 2011 (111): 1328-1337.