Modernizing the transportation ecosystem
IoT connectivity has already transformed the transportation industry and promises continued innovations. Companies such as Bosch and Continental have invested heavily in building semi-autonomous driver assistance tools while other companies such as Mercedes Benz and Audi are working on Level 4 and 5 fully autonomous vehicles. These vehicles and tools rely upon sensors that collect and feed data back to Electronic Control Units (ECUs) within the vehicle. Connected Vehicle (CV) technology is rapidly maturing through multiple CV pilots around the world, the largest being the 8,000+ vehicle New York City Connected Vehicle Pilot Deployment (note: the author, Drew Van Duren, is a security consultant to this deployment). General Motors has also fitted some vehicles with CV technology. The 2017 Cadillac CTS, for example, operates Vehicle-to-Vehicle (V2V) technology on the 5.9 GHz spectrum to share vehicle location, speed, and traffic conditions with peer vehicles on the road. V2V technology supports sharing of vehicle data including latitude, longitude, heading angle, speed, lateral and longitudinal acceleration, throttle position, brake status, steering angle, headlight status, wiper status, turn signal status, and vehicle length and width.
Intelligent Transportation Systems (ITS) promise to optimize traffic across smart cities. For example, queue warnings will let vehicles and drivers know whether a backup is forming. Vehicle navigation systems can then quickly route around the backup, easing traffic congestion. Applications such as these are aided by connected roadside equipment, known as Roadside Units (RSUs). RSUs communicate using protocols including Dedicated Short Range Communications (DSRC) to collect, proxy, and transmit data across the vehicle ecosystem, including with the local roadside (traffic signal controllers, dynamic message signs, and so on) and Traffic Management Centers (TMCs).