参考文献
[1]Li W B,Wang J X,Gong H.Catalytic combustion ofVOCs on non-noble metal catalysts.Catalysis Today,2009.148(1-2):81-87.
[2]Yu D,Wang X,Li D,et al.Catalytic combustion of chlorobenzene over Mn-Ce-La-O mixed oxide catalysts. Journal of Hazardous Materials,2011,188(1-3):132-139.
[3]Pires J,A Carvalho,M B de Carvalho.Adsorption ofVolatile organic compounds in Y zeolites and pillared clays.Microporous and Mesoporous Materials,2001,43(3):277-287.
[4]Streger S H,Condee C W,Togna A P,et al.Degradation of hydrohalocarbons and brominated compounds by methane-and propane-oxidizing bacteria.Environmental Science & Technology,1999,33(24):4477-4482.
[5]Pitkäaho S,Ojal S,Maunul T,et al.Oxidation of dichloromethane and perchloroethylene as single compounds and in mixtures.Applied Catalysis B:Environmental,2011,102(3-4):395-403.
[6]Li H,Lu G,Dai Q,et al.Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2microspheres.Applied Catalysis B:Environmental,2011,102(3-4):475-483.
[7]黎维彬,龚浩.催化燃烧去除VOCs污染物的最新进展.物理化学学报,2010(04):885-894.
[8]Taralunga M,Mijoin J,Magnoux P.Catalytic destruction of chlorinated POPs—Catalytic oxidation of chlorobenzene over PtHFAU catalysts.Applied Catalysis B:Environmental,2005,60(3-4):163-171.
[9]Giraudon J M,Elhachimi A,Leclercq G,Catalytic oxidation of chlorobenzene over Pd/perovskites.Applied Catalysis B:Environmental,2008,84(1-2):251-261.
[10]Scirè S,MinicòS,Crisafulli C.Pt catalysts supported on H-type zeolites for the catalytic combustion of chlorobenzene.Applied Catalysis B:Environmental,2003,45(2):117-125.
[11]李鹏,何炽,程杰等,含钯类水滑石衍生复合氧化物Pd/M3AlO(M=Mg,Co,Ni,Cu,Zn)催化剂上氯苯的催化氧化.物理化学学报,2009(11):2279-2284.
[12]Li D,Zheng Y,Wang X Y.Effect of phosphoric acid on catalytic combustion of trichloroethylene over Pt/P-MCM-41.Applied Catalysis a-General,2008,340(1):33-41.
[13]Van den Brink R W,Louw R,Mulder P.Increased combustion rate of chlorobenzene on Pt/γ-Al2O3in binary mixtures with hydrocarbons and with carbon monoxide.Applied Catalysis B:Environmental,2000,25(4):229-237.
[14]Dai Q G,Wang X Y,Lu G Z.Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation.Applied Catalysis B-Environmental,2008,81(3-4):192-202.
[15]Wang X Y,Kang Q,Li D.Catalytic combustion of chlorobenzene over MnOx-CeO2mixed oxide catalysts.Applied Catalysis B:Environmental,2009,86(3-4):166-175.
[16]de Rivas B.,López-Fonseca R,et al.Impact of induced chlorine-poisoning on the catalytic behaviour of Ce0.5Zr0.5O2and Ce0.15Zr0.85O2in the gas-phase oxidation of chlorinatedVOCs.Applied Catalysis B:Environmental,2011.In Press,Corrected Proof.
[17]黄琴琴,周仁贤.负载型CeO2催化剂催化降解Cl-VOCs性能的研究.全国环境催化与环境材料学术会议,2009.
[18]Gutierrez-Ortiz J I,de Rivas B,López-Fonseca R,et al.Structure of Mn-Zr mixed oxides catalysts and their catalytic performance in the gas-phase oxidation of chlorocarbons.Chemosphere,2007,68(6):1004-1012.
[19]Abdullah A Z,Abu Bakar M Z,Bhatia S.Combustion of chlorinatedVolatile organic compounds(VOCs)using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst.Journal of Hazardous Materials,2006,129(1-3):39-49.
[20]吴西宁,庞菊玲,曹武轩等.催化氧化法分解邻二氯苯.工业催化,2003(11):45-48.
[21]Kawi S,Te M.MCM-48 supported chromium catalyst for trichloroethylene oxidation.Catalysis Today,1998,44(1-4):101-109.
[22]Aranzabal A,Gonzalez-Marcos J A,Romero-Sez M,et al.Stability of protonic zeolites in the catalytic oxidation of chlorinatedVOCs(1,2-dichloroethane).Applied Catalysis B-Environmental,2009,88(3-4):533-541.
[23]Bertinchamps F,Groire C,Gaigneaux E M.Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of(chloro)-aromatics:Part I:Identification of the optimal main active phases and supports.Applied Catalysis B:Environmental,2006,66(1-2):1-9.
[24]de Rivas B,Lopez-Fonseca R,Sampedro C,et al.Catalytic behaviour of thermally aged Ce/Zr mixed oxides for the purification of chlorinatedVOC-containing gas streams.Applied Catalysis B-Environmental,2009,90(3-4):545-555.
[25]龚浩,黎维彬.1,2-二氯乙烷在担载铈钛复合氧化物的蜂窝陶瓷催化剂上的催化燃烧:催化活性组分颗粒大小对转化率的影响,2009,威海.
[26]Saleh F S,Rahman M M.Oxidative destruction of o-DCB on supported manganese oxide catalyst.Journal of Hazardous Materials,2009,162(2-3):1574-1577.
[27]VuV H,Belkouch J,Ould-Dris A,et al.Removal of hazardous chlorinatedVOCs over Mn-Cu mixed oxide based catalyst.Journal of Hazardous Materials,2009,169(1-3):758-765.
[28]Yim S D,Koh D J,In-Sik Nam.A pilot plant study for catalytic decomposition of PCDDs/PCDFs over supported chromium oxide catalysts.Catalysis Today,2002,75(1-4):269-276.
[29]Rachapudi R,Chintawar P S,Greene H L.Aging and structure activity characteristics of CR-ZSM-5 catalysts during exposure to chlorinatedVOCs.Journal of Catalysis,1999,185(1):58-72.
[30]Jones J,Ross J R H.The development of supportedVanadia catalysts for the combined catalytic removal of the oxides of nitrogen and of chlorinated hydrocarbons from flue gases.Catalysis Today,1997,35(1-2):97-105.
[31]沈柳倩,翁芳蕾,袁鹏军等.钙钛矿型催化剂对VOCs催化燃烧的抗毒性和稳定性研究.分子催化,2008(04):320-324.
[32]Guillemot M,Mijoin J,Mignard S,et al.Volatile organic compounds(VOCs)removal over dual functional adsorbent/catalyst system.Applied Catalysis B:Environmental,2007,75(3-4):249-255.
[33]López-Fonseca R,et al.Performance of zeolites and product selectivity in the gas-phase oxidation of 1,2-dichloroethane.Catalysis Today,2000,62(4):367-377.
[34]Huang Q,Xue X,Zhou R.Decomposition of 1,2-dichloroethane over CeO2modified USY zeolite catalysts:Effect of acidity and redox property on the catalytic behavior.Journal of Hazardous Materials,2010,183(1-3):694-700.
[35]Krishnamoorthy S,Rivas J A,Amiridis M D.Catalytic Oxidation of 1,2-Dichlorobenzene over Supported Transition Metal Oxides.Journal of Catalysis,2000,193(2):264-272.
[36]Khaleel A,Al-Nayli A.Supported and mixed oxide catalysts based on iron and titanium for the oxidative decomposition of chlorobenzene.Applied Catalysis B:Environmental,2008,80(1-2):176-184.
[37]Pu Y Y,Fang J Z,Peng F .Microemulsion Synthesis of Nanosized SiO2/TiO2Particles and Their Photocatalytic Activity[J].Chinese Journal of Catalysis,2007,28(3):251-256.
[38]Qourzal S,Barka.N,Tamimi M,Assabbane A.Sol-gel synthesis of TiO2-SiO2photocatalyst for β-naphthol photodegradation[J].Materials Science & Engineering,2008,9(15):1-18.
[39]Jenog S,CHAN S,TAE O.Structural and chemical characterization of SiO2/TiO2multicomponent particles during aerosol formationin a coflow diffusion flame[J].Advanced Powder Technol,2006,5(17):495-508.
[40]肖奇,邱冠周,胡岳华.纳米二氧化钛的制备及应用新进展[J].材料导报,2000,14(8):35-37.
[41]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
[42]孙丽萍,高山,赵辉等.纳米二氧化钛的晶型转变及光催化性能研究[J].功能材料,2005,5(35):632-634.
[43]符春林,魏稀文.二氧化钛晶型转变研究进展[J].材料导报,1999,13(3):45-47.
[44]王鲁燕.不同结构纳米TiO2-SiO2复合氧化制备、表征和比较研究[D].太原理工大学.
[45]赵敬哲,王子悦,王莉玮.超细多孔TiO2的制备及机理研究[J].高等学校化学学报,1999,20:115-118.
[46]Shi L,Weng D.Highly active mixed-phase TiO2photocatalysts fabricated at low temperature and the correlation between phase composition and photocatalytic activity[J].Journal of Environmental Sciences.2008:1263-1267.
[47]何都良,王传海,夏明芳等.纳米TiO2的晶相控制及其光催化活性研究[J].环境科学与技术,2004,27(6):6-9.
[48]刘曙光,魏伟.混晶结构纳米 TiO2粉体的制备与性能表征[J].硅酸盐通报,2007,26(6):1089-1093.
[49]高伟,吴凤清,罗臻等.TiO2晶型与光催化活性关系的研究[J].高等学校化学学报,2001,22(4):660-662.
[50]Jung K Y,Park S B,Masakazu.An pocphotoluminescence and photoactivity of titania particles prepared by the sol-gel technique:effect of calcination temperature[J].Journal of Photochemistry and Photobiology A:Chemistry.2005,170:247-252.
[51]Cooper Ian L,Egerton Terry A,Fulian Q.A model of growth of titanium dioxide crystals with simultaneous transformation from anatase to rutile[J].Journal of the European Ceramic Society,2009,29:637-646.
[52]Chen Y F,Lee C Y,Yeng M Y,et al.The effect of calcinations te-mperature on the crystallinity of TiO2nanopowders[J].Journal of Crystal Growth,2003,247:363-370.
[53]肖锋,叶健东,王秀鹏等.干燥方法对化学沉淀法合成HA粉体团聚的影响[J].硅酸盐通报.2006,1:3-5.
[54]林发蓉,何代平,蔡铎昌等.超临界干燥法制备的锐钛矿TiO2纳米晶的性能研究[J].西华师范大学学报,2007,28(1):49-52.
[55]何代平.干燥法对纳米TiO2晶相及其光催化活性的影响[J].应用化学,2007,8:751-754.
[56]Colmenares J C,Aramendia A,Marina Synthesis.M,et al.Characterization and photo catalytic activity of different metal-doped titania systems[J].Applied Catalysis A:General,2006,3(7):120-127.
[57]Xu J P,Shi S.B,Li L,Wang J F,et.al.Effect of manganese ions concentration on the anatase-rutile phase transformation of TiO2films[J].Journal of Physics and Chemistry of Solids,2009,6:1-4.
[58]Diamandescus L,Vasiliua F,Tarabasanuu-Mihaila D,et al.Structural and photocatalytic properties of iron-and europium-doped TiO2nanoparticles obtained under hydrothermal conditions[J].Materials Chemistry and Physics,2008,112:146-153.
[59]Jung Y S,Kim D W,Kim Y-S,et al.Synthesis of alumina-titania solid solution by sol-gel method[J]. Journal of Physics and Chemistry of Solids,2008,69:1464-1467.
[60]井立强,孙晓君,辛柏福等.掺杂镧和铈的TiO2纳米粒子的结构相变[J].材料科学与工艺,2004,2:148-152.
[61]王志义,史献峰,崔作林.ZnO异质复合对纳米TiO2晶型转变和晶粒生长的影响[J].硅酸盐通报,2006,34(9):1078-1083.
[62]Kobayashi M,Kuam R,Masaki.TiO2-SiO2andV2O5/TiO2-SiO2catalyst:Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3[J].Applied Catalysis B:Environ,2005,60:173-179.
[63]Periyat P,Baiju KV,Mukundan P,et al.High temperature stable mesoporous anatase TiO2photocatalyst achieved by silica addition[J].Applied Catalysis A:General,2008,349:13-19.
[64]Ida J,Yoshikawa T,Matsuyama T.TiO2coating on silica particles by of deposition sol-gel-derived nanoparticles[J]. Advanced Powder Technol,2007,18(3):329-348.
[65]姚超,高国生,林西平等.SiO2对金红石相纳米TiO2热稳定性的影响[J].江苏工业学院学报,2003,15(4):1-4.
[66]陈前林,吴建青,王龙现.SiO2的加入方法对高温稳定型纳米TiO2光催化活性的影响[J].中国陶瓷,2006,42(6):12-14.
[67]封娜,郑治祥,徐光青等.TiO2/SiO2复合粉体的制备及催化性能的研究[J].合肥工业大学学报,2006,29(6):651-654.
[68]李凡修,陆晓华,梅平.金属离子掺杂对纳米TiO2晶型转变影响作用机制的研究进展[J].材料导报,2006,20(9):13-16.
[69]刘畅,暴宁钟,杨祝红等.过渡金属离子掺杂改性TiO2的光催化性能研究进展[J].催化学报,2001,22(2):215-218.
[70]熊建裕,乔学亮,陈建国.银掺杂对二氧化钛晶型转变的影响[J].陶瓷报,2005,26(2):84-86.
[71]SubramanianV,Zheng Ni,Seebauer E G,et al.Synthesis of High-Temperature Titania-Alumina Supports[J]. Industrial and Engingeering Chemistry Researcher,2006,45:3815-3820.
[72]赵春,钟顺和.V2O5-TiO2复合半导体光催化材料结构及光响应性能研究[J].无机化学学报,2006,22(2):238-242.
[73]王艳芹,张莉,程虎民等.掺杂过渡金属离子的TiO2复合纳米粒子光催化剂-罗丹明B的光催化降解[J].高等学校化学学报,2000,21(6):958-960.
[74]Gomathi d L,Girrish K S,Narasimh M B,et al.Influence of Mn2+ and Mo6+ dopants on the phase transformations of TiO2lattice and its photo catalytic activity under solar illumination[J].Catalysis Communications,2009,10:794-798.
[75]岳林海,水淼,徐铸德.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报(理学版),2000,27(1):69-74.
[76]陈代荣,孟祥建,李博等.偏钛酸作前躯体水热合成TiO2微粉[J].无机材料学报.1997,12(1):110-114.
[77]Yu J G,Yu J C,Cheng B,et al.The effect of F-doping and temperature on the structural and textural evolution of mesoporous TiO2powders[J].Journal of Solid State Chemistry,2003,147:372-380.
[78]Liu J,Qina W L,Zuo S L,et al.Solvothermal-induced phase transition andVisible photocatalytic activity of nitrogen-doped titania[J].Journal of Hazardous Materials,2009,163:273-278.
[79]Tian H,Ma J,Li K,et al.Hydrothermal synthesis of S-doped TiO2nanoparticles and their photocatalytic ability for degradation of methyl orang[J].Ceramics International,2009,35:1289-1292.
[80]周利民,王一平,黄群武等.Ag/S/C共掺杂纳米TiO2的制备与光催化活性[J].半导体光电,2008,29(1):365-369.
[81]周亮,邓健,廖力夫等.氮铈共掺杂纳米TiO2的制备和光催化活性研究[J].应用化工,2008,37(8):857-861.
[82]Ashir,Morikawa T,Ohwaki T,et al.Visible-light photocatalysis in nitrogen-doped titanium oxide[J].Science,2001,293:269-271.
[83]陈琦丽,唐超群.过渡金属掺杂金红石相TiO2能带结构的第一性原理计算[J].材料科学与工程学报,2006,24(4):514-516.
[84]Rahman M M,Ahammad A J S,Jin J-H,et al.A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides[J].Sensors,2010,10:4855-4886.
[85]Clark L C,Lyons C.Electrode systems for continuous monitoring in cardiovascular surgery[J].Annals of the New York Academy of Sciences,1962,102:29-45.
[86]Tsujimura S,Kojima S,Kano K,et al.Novel FAD-dependent glucose dehydrogenase for a dioxygen-insensitive glucose biosensor[J].Bioscience,biotechnology,and biochemistry,2006,70:654-659.
[87]Toghill K E,Compton R G.Electrochemical non-enzymatic glucose sensors:a perspective and an evaluation[J]. Int J Electrochem Sci,2010,5:1246-1301.
[88]Lau K T,de Fortescu S A,Murphy L J,et al.Disposable Glucose Sensors for Flow Injection Analysis Using Substituted 1,4‐Benzoquinone Mediators[J].Electroanalysis,2003,15:975-981.
[89]Nien P C,Wang J Y,Chen P Y,et al.Encapsulating benzoquinone and glucose oxidase with a PEDOT film:application to oxygen-independent glucose sensors and glucose/O2biofuel cells[J].Bioresource technology,2010,101:5480-5486.
[90]Park H J,Won K,Lee S Y,et al.Fabrication of CNT/ferrocene/glucose oxidase/chitosan-layered bioanode for glucose/oxygen biofuel cells[J].Molecular Crystals and Liquid Crystals,2011,539:238-246.
[91]Si P,Huang Y J,Wang T H,et al.Nanomaterials for electrochemical non-enzymatic glucose biosensors[J].Rsc Advances,2013,3:3487-3502.
[92]Zhou Y G,Yang S,Qian Q Y,et al.Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose[J].Electrochemistry Communications,2009,11:216-219.
[93]Song Y Y,Zhang D,Gao W,et al.Nonenzymatic glucose detection by using a three‐dimensionally ordered,macroporous platinum template[J].Chemistry-a European Journal,2005,11:2177-2182.
[94]Chen X m,Lin Z j,Chen D J,et al.Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes[J].Biosensors and Bioelectronics,2010,25:1803-1808.
[95]Lu L M,Zhang L,Qu F L,et al.A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose:enhancing sensitivity through a nanowire array strategy[J].Biosensors and Bioelectronics,2009,25:218-223.
[96]Xu Q,Zhao Y,Xu J Z,et al.Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor[J].Sensors and Actuators B-Chemical.2006,114:379-386.
[97]Kung C W,Lin C Y,Lai Y H,et al.Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose[J].Biosensors and Bioelectronics,2011,27:125-131.
[98]Ding Y,Wang Y,Su L,et al.Electrospun Co3O4nanofibers for sensitive and selective glucose detection[J]. Biosensors and Bioelectronics,2010,26:542-548.
[99]Li M,Han C,Zhang Y,et al.Facile synthesis of ultrafine Co3O4nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors[J].Analytica Chimica Acta,2015,861:25-35.
[100]Khun K,Ibupoto Z H,Liu X,et al.The ethylene glycol template assisted hydrothermal synthesis of Co3O4nanowires; structural characterization and their application as glucose non-enzymatic sensor[J].Materials Science and Engineering B-Advanced Functional Solid-State Materials,2015,194:94-100.
[101]Wang L,Fu J Y,Hou H Q,et al.A Facile Strategy to Prepare Cu2O/Cu Electrode as a Sensitive Enzyme-free Glucose Sensor[J].International Journal of Electrochemical Science,2012,7:12587-12600.
[102]Sun S D,Zhang X Z,Sun Y X,et al.Hierarchical CuO nanoflowers:water-required synthesis and their application in a nonenzymatic glucose biosensor[J].Physical Chemistry Chemical Physics,2013,15:10904-10913.
[103]Li C L,Su Y,Zhang S W,et al.An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modified electrode[J].Biosensors & Bioelectronics,2010,26:903-907.
[104]Mu Y,Jia D,He Y,et al.Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential[J].Biosensors & Bioelectronics,2011,26:2948-2952.
[105]Li C,Liu Y,Li L,et al.A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose[J].Talanta,2008,77:455-459.
[106]Zhang W D,Chen J,Jiang L C,et al.A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes[J].Microchimica Acta,2010,168:259-265.
[107]Chen J,Zhang W D,Ye J S.Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite[J].Electrochemistry Communications,2008,10:1268-1271.
[108]Li L,Du Z,Liu S,et al.A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite[J].Talanta,2010,82:1637-1641.
[109]Tarlani A,Fallah M,Lotfi B,et al.New ZnO nanostructures as non-enzymatic glucose biosensors[J]. Biosensors & Bioelectronics,2015,67:601-607.
[110]EI Khatib K M,Abdel Hameed R M.Development of Cu2O/CarbonVulcan XC-72 as non-enzymatic sensor for glucose determination[J].Biosensors and Bioelectronics,2011,26:3542-3548.
[111]Bai Y,Sun Y,Sun C.Pt-Pb nanowire array electrode for enzyme-free glucose detection[J].Biosensors & Bioelectronics,2008,24:579-585.
[112]Guo M Q,Wang R,Xu X H.Electrosynthesis of pinecone-shaped Pt-Pb nanostructures based on the application in glucose detection[J].Materials Science & Engineering C-Materials for Biological Applications,2011,31:1700-1705.
[113]Guo M,Fang H,Wang R,et al.Electrodeposition of chitosan-glucose oxidase biocomposite onto Pt-Pb nanoparticles modified stainless steel needle electrode for amperometric glucose biosensor[J].Journal of Materials Science-Materials in Medicine,2011,22:1985-1992.
[114]Cui H F,Ye J S,Liu X,et al.Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite:a strong electrocatalyst for glucose oxidation[J].Nanotechnology,2006,17:2334-2339.
[115]Hu Y J,Du W J,Chen C Y.Fabrication of Flower-shaped Pt-Au-graphene Nanostructure and its Application in Electrochemical Detection of Glucose[J].Chinese Journal of Analytical Chemistry,2014,42:1240-1244.
[116]Zhu X,Li C,Zhu X,et al.Nonenzymatic Glucose Sensor Based on Pt-Au-SWCNTs Nanocomposites[J]. International Journal of Electrochemical Science,2012,7:8522-8532.
[117]Liu Y,Ding Y,Zhang Y,et al.Pt-Au nanocorals,Pt nanofibers and Au microparticles prepared by electrospinning and calcination for nonenzymatic glucose sensing in neutral and alkaline environment[J].Sensors and Actuators B-Chemical.2012,171:954-961.
[118]Li Y,Niu X,Tang J,et al.A Comparative Study of Nonenzymatic Electrochemical Glucose Sensors Based on Pt-Pd Nanotube and Nanowire Arrays[J].Electrochimica Acta,2014,130:1-8.
[119]Niu X,Lan M,Chen C,et al.Nonenzymatic electrochemical glucose sensor based on novel Pt-Pd nanoflakes[J]. Talanta,2012,99:1062-1067.
[120]Niu X,Chen C,Zhao H,et al.Novel snowflake-like Pt-Pd bimetallic clusters on screen-printed gold nanofilm electrode for H2O2and glucose sensing[J].Biosensors & Bioelectronics,2012,36:262-266.
[121]Hu Y,He F,Ben A,et al.Synthesis of hollow Pt-Ni-graphene nanostructures for nonenzymatic glucose detection[J].Journal of Electroanalytical Chemistry,2014,726:55-61.
[122]Mahshid S S,Mahshid S,Dolati A,et al.Electrodeposition and electrocatalytic properties of Pt/Ni-Co nanowires for non-enzymatic glucose detection[J].Journal of Alloys and Compounds,2013,554:169-176.
[123]Mahshid S S,Luo S,Yang L,et al.A Well-Dispersed Pt/Ni/TiO2Nanotubes Modified Electrode as an Amperometric Non-Enzymatic Glucose Biosensor[J].Sensor Letters,2011,9:1598-1605.
[124]Yu H,He Y.Seed-assisted synthesis of dendritic Au-Ag bimetallic nanoparticles with chemiluminescence activity and their application in glucose detection[J].Sensors and Actuators B-Chemical,2015,209:877-882.
[125]Shi Q,Diao G,Mu S.The electrocatalytic oxidation of glucose on the bimetallic Au-Ag particles-modified reduced graphene oxide electrodes in alkaline solutions[J].Electrochemica Acta,2014,133:335-346.
[126]Lin K-C,Lin Y-C,Chen S-M.A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles[J].Electrochemica Acta,2013,96:164-172.
[127]Li X,Yao J,Liu F,et al.Nickel/Copper nanoparticles modified TiO2nanotubes for non-enzymatic glucose biosensors[J].Sensors and Actuators B-Chemical,2013,181:501-508.
[128]Ding R,Liu J,Jiang J,et al.Mixed Ni-Cu-oxide nanowire array on conductive substrate and its application as enzyme-free glucose sensor[J].Analytical Methods,2012,4:4003-4008.
[129]Song J,Xu L,Xing R,et al.Ag nanoparticles coated NiO nanowires hierarchical nanocomposites electrode for nonenzymatic glucose biosensing[J].Sensors and Actuators B-Chemical,2013,182:675-681.
[130]Ding Y,Wang Y,Su L,et al.Preparation and characterization of NiO-Ag nanofibers,NiO nanofibers,and porous Ag:towards the development of a highly sensitive and selective non-enzymatic glucose sensor[J].Journal of Materials Chemistry,2010,20:9918-9926.
[131]Wang L,Lu X,Wen C,et al.One-step synthesis of Pt-NiO nanoplate array/reduced graphene oxide nanocomposites for nonenzymatic glucose sensing[J].Journal of Materials Chemistry A,2015,3:608-616.
[132]Li M,Bo X,Mu Z,et al.Electrodeposition of nickel oxide and platinum nanoparticles on electrochemically reduced graphene oxide film as a nonenzymatic glucose sensor[J].Sensors and Actuators B-Chemical,2014,192:261-268.
[133]Ding Y,Liu Y,Zhang L,et al.Sensitive and selective nonenzymatic glucose detection using functional NiO-Pt hybrid nanofibers[J].Electrochimica Acta,2011,58:209-214.
[134]Zhang X,Gu A,Wang G,et al.Porous Cu-NiO modified glass carbon electrode enhanced nonenzymatic glucose electrochemical sensors[J].Analyst,2011,136:5175-5180.
[135]Li C,Kurniawan M,Sun D,et al.Nanoporous CuO layer modified Cu electrode for high performance enzymatic and non-enzymatic glucose sensing[J].Nanotechnology,2015,26.
[136]Dong J,Ren L,Zhang Y,et al.Direct electrodeposition of cable-like CuO@Cu nanowires array for non-enzymatic sensing[J].Talanta,2015,132:719-726.
[137]Zhang J,Xiao X,He Q,et al.A Nonenzymatic Glucose Sensor Based on a Copper Nanoparticle-Zinc Oxide Nanorod Array[J].Analytical Letters,2014,47:1147-1161.
[138]SoYoon S,Ramadoss A,Saravanakumar B,et al.Novel Cu/CuO/ZnO hybrid hierarchical nanostructures for non-enzymatic glucose sensor application[J].Journal of Electroanalytical Chemistry,2014,717:90-95.
[139]Cai B,Zhou Y,Zhao M,et al.Synthesis of ZnO-CuO porous core-shell spheres and their application for non-enzymatic glucose sensor[J].Applied Physics a-Materials Science & Processing,2015,118:989-996.
[140]Zhou C,Xu L,Song J,et al.Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning[J].Scientific Reports,2014,4.
[141]Ding Y,Wang Y,Zhang L,et al.Preparation,characterization and application of novel conductive NiO-CdO nanofibers with dislocation feature[J].Journal of Materials Chemistry,2012,22:980-986.
[142]Zhang X J,Wang G F,Zhang W,et al.Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor[J].Biosensors & Bioelectronics,2009,24:3395-3398.
[143]Zor E,Oztekin Y,Ramanaviciene A,et al.Amperometric Glucose Biosensor Based on Glucose Oxidase,1,10-Phenanthroline-5,6-dione and Carbon Nanotubes[J].Journal of the Electrochemical Society,2014,161:H3064-H3069.
[144]Li M,Liu L,Xiong Y,et al.Bimetallic MCo(M=Cu,Fe,Ni,and Mn)nanoparticles doped-carbon nanofibers synthetized by electrospinning for nonenzymatic glucose detection[J].Sensors and Actuators B-Chemical,2015,207:614-622.
[145]Adabi M,Saber R,Faridi-Majidi R,et al.Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors[J].Materials Science & Engineering C-Materials for Biological Applications,2015,48:673-678.
[146]Nia P M,Meng W P,Lorestani F,et al.Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensor[J].Sensors and Actuators B-Chemical,2015,209:100-108.
[147]Wang Y,Wei W,Zeng J,et al.Fabrication of a copper nanoparticle/chitosan/carbon nanotube-modified glassy carbon electrode for electrochemical sensing of hydrogen peroxide and glucose[J].Microchimica Acta,2008,160:253-260.
[148]Kang X H,Mai Z B,Zou X Y,et al.A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nano tube-modified glassy carbon electrode[J].Analytical Biochemistry,2007,363:143-150.
[149]Niu X,Li Y,Tang J,et al.Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection:A Cu foam case[J].Biosensors & Bioelectronics,2014,51:22-28.
[150]Welch C M,Compton R G.The use of nanoparticles in electroanalysis:a review[J].Analytical and bioanalytical chemistry,2006,384:601-619.
[151]Akhavan O,Ghaderi E.Copper oxide nanoflakes as highly sensitive and fast response self-sterilizing biosensors[J]. J Mater Chem,2011,21:12935-12940.
[152]Li K,Fan G,Yang L,et al.Novel ultrasensitive non-enzymatic glucose sensors based on controlled flower-like CuO hierarchical films[J].Sensors and Actuators B:Chemical,2014,199:175-182.
[153]Song J,Xu L,Zhou C,et al.Synthesis of Graphene Oxide Based CuO Nanoparticles Composite Electrode for Highly Enhanced Nonenzymatic Glucose Detection[J].Acs Applied Materials & Interfaces,2013,5:12928-12934.
[154]Liu M,Liu R,Chen W.Graphene wrapped Cu2O nanocubes:Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability[J].Biosensors and Bioelectronics,2013,45:206-212.
[155]Hassan H B,Hamid Z A.Electrodeposited Cu-CuO Composite Films for Electrochemical Detection of Glucose[J]. International Journal of Electrochemical Science,2011,6:5741-5758.
[156]Zhang X,Wang G,Zhang W,et al.Seed-mediated growth method for epitaxial array of CuO nanowires on surface of Cu nanostructures and its application as a glucose sensor[J].Journal of Physical Chemistry C,2008,112:8856-8862.
[157]Huo H,Guo C,Li G,et al.Reticular-vein-like Cu@Cu2O/reduced graphene oxide nanocomposites for a non-enzymatic glucose sensor[J].Rsc Advances,2014,4:20459-20465.
[158]Wang A J,Feng J J,Li Z H,et al.Solvothermal synthesis of Cu/Cu2O hollow microspheres for non-enzymatic amperometric glucose sensing[J].Crystengcomm,2012,14:1289-1295.
[159]Chou C S,Yang R Y,Yeh C K,et al.Preparation of TiO2/Nano-metal composite particles and their applications in dye-sensitized solar cells[J].Powder Technology,2009,194:95-105.
[160]Nagaoka S,Arinaga K,Kubo H,et al.Cellulose/TiO2hybrid spherical microbeads prepared by aViscose phase separation method:Control of the distribution of TiO2particles in a sphering system[J].Polymer Journal,2005,37:186-191.
[161]Liu Y,Cheng K,Weng W,et al.Influence of rod-surface structure on biological interactions between TiO2nanorod films and proteins/cells[J].Thin Solid Films,2013,544:285-290.
[162]Su Y-F,Lee M-C,Wang G-B,et al.An innovative method to quickly and simply prepare TiO2nanorod arrays and improve their performance in photo water splitting[J].Chemical Engineering Journal,2014,253:274-280.
[163]Yoriya S,Mor G K,Sharma S,et al.Synthesis of ordered arrays of discrete,partially crystalline titania nanotubes by Ti anodization using diethylene glycol electrolytes[J].J Mater Chem,2008,18:3332-3336.
[164]Lee J H,Leu I C,Hsu M C,et al.Fabrication of aligned TiO2nanostructured arrays using a one-step templating solution approach[J].Journal of Physical Chemistry B,2005,109:13056-13059.
[165]Nakahira A,Kubo T,Numako C.Formation mechanism of TiO2-derived titanate nanotubes prepared by the hydrothermal process[J].Inorganic chemistry,2010,49:5845-5852.
[166]Nakahira A,Kubo T,Numako C.TiO2-derived titanate nanotubes by hydrothermal process with acid treatments and their microstructural evaluation[J].Acs Applied Materials & Interfaces,2010,2:2611-2616.
[167]Bavykin DV,Friedrich J M,Walsh F C.Protonated Titanates and TiO2Nanostructured Materials:Synthesis,Properties,and Applications[J].Advanced Materials,2006,18:2807-2824.
[168]Kobayashi S,Hamasaki N,Suzuki M,et al.Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents[J].Journal of the American Chemical Society,2002,124:6550-6551.
[169]Lee C H,Rhee S W,Choi H W.Preparation of TiO2nanotube/nanoparticle composite particles and their applications in dye-sensitized solar cells[J].Nanoscale Research Letters,2012,7:1-5.
[170]ZwillingV,Darque-Ceretti E,Boutry-Forveille A,et al.Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy[J].Surface and Interface Analysis,1999,27:629-637.
[171]Gong D,Grimes C A,Varghese O K,et al.Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research,2001,16:3331-3334.
[172]Huang J Y,Zhang K Q,Lai Y K.Fabrication,Modification,and Emerging Applications of TiO2Nanotube Arrays by Electrochemical Synthesis:A Review[J].International Journal of Photoenergy,2013.
[173]Mor G K,Varghese O K,Paulose M,et al.Fabrication of tapered,conical-shaped titania nanotubes[J].Journal of Materials Research,2003,18:2588-2593.
[174]Cai Q,Paulose M,Varghese O K,et al.The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation[J].Journal of Materials Research,2005,20:230-236.
[175]Paulose M,Shankar K,Yoriya S,et al.Anodic growth of highly ordered TiO2nanotube arrays to 134μm in length[J].The Journal of Physical Chemistry B,2006,110:16179-16184.
[176]Ruan C M,Paulose M,Varghese O K,et al.Fabrication of highly ordered TiO2nanotube arrays using an organic electrolyte[J].Journal of Physical Chemistry B,2005,109:15754-15759.
[177]Prakasam H E,Shankar K,Paulose M,et al.A new benchmark for TiO2nanotube array growth by anodization[J].The Journal of Physical Chemistry C,2007,111:7235-7241.
[178]Nakayama K,Kubo T,Tsubokura A,et al.Anodic formation of high-aspect-ratio titania nanotubes. Meeting Abstracts:The Electrochemical Society,2006:819-819.
[179]Richter C,Wu Z,Panaitescu E,et al.Ultra‐High‐Aspect‐Ratio Titania Nanotubes[J].Advanced Materials,2007,19:946-948.
[180]Chen X,Schriver M,Suen T,et al.Fabrication of 10nm diameter TiO2nanotube arrays by titanium anodization[J].Thin Solid Films,2007,515:8511-8514.
[181]Roy P,Berger S,Schmuki P.TiO2nanotubes:synthesis and applications[J].Angewandte Chemie International Edition,2011,50:2904-2939.
[182]Mohapatra S K,Kondamudi N,Banerjee S,et al.Functionalization of self-organized TiO2nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination[J].Langmuir,2008,24:11276-11281.
[183]Park J H,Kim S,Bard A J.Novel carbon-doped TiO2nanotube arrays with high aspect ratios for efficient solar water splitting[J].Nano letters,2006,6:24-28.
[184]Zhu K,Neale N R,Miedaner A,et al.Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2Nanotubes Arrays[J].Nano letters,2007,7:69-74.
[185]Sun L,Zhang S,Wang X,et al.A novel parallel configuration of dye-sensitized solar cells with double-sided anodic nanotube arrays[J].Energy & Environmental Science,2011,4:2240-2248.
[186]Baker D R,Kamat PV.Photosensitization of TiO2nanostructures with CdS quantum dots:particulateVersus tubular support architectures[J].Advanced Functional Materials,2009,19:805-811.
[187]Elias C N,Lima J H C,Valiev R,et al.Biomedical applications of titanium and its alloys[J].JOM,2008,60:46-49.
[188]Huo K F,Gao B,Fu J J,et al.Fabrication,modification,and biomedical applications of anodized TiO2nanotube arrays[J].Rsc Advances,2014,4:17300-17324.
[189]Popat K C,Eltgroth M,LaTempa T J,et al.Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes[J].Biomaterials,2007,28:4880-4888.
[190]Popat K C,Eltgroth M,LaTempa T J,et al.Titania Nanotubes:A Novel Platform for Drug‐Eluting Coatings for Medical Implants?[J].Small,2007,3:1878-1881.
[191]Peng L,Eltgroth M L,LaTempa T J,et al.The effect of TiO2nanotubes on endothelial function and smooth muscle proliferation[J].Biomaterials,2009,30:1268-1272.
[192]Gao Z D,Han Y Y,Li Y C,et al.Photocatalytic synthesis and synergistic effect of Prussian blue-decorated Au nanoparticles/TiO2nanotube arrays for H2O2amperometric sensing[J].Electrochimica Acta,2014,125:530-535.
[193]Liu J,Ruan L,Xu G,et al.Galvanostatic deposition of Pt nanoparticles on TiO2nanotube arrays for amperometric detection of hydrogen peroxide at low overpotentials.In:Zhao GM,Chen L,Tang Y,Long B,Nie Z,He L,et al.,editors.Eighth China National Conference on Functional Materials and Applications,2014.174-182.
[194]Luo S L,Su F,Liu C B,et al.A new method for fabricating a CuO/TiO2nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor[J].Talanta,2011,86:157-163.
[195]Wang W,Xie Y,Wang Y,et al.Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays[J].Microchimica Acta,2014,181:381-387.
[196]Mor G K,Carvalho M A,Varghese O K,et al.A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination[J].Journal of Materials Research,2004,19:628-634.
[197]Huang L,Zhang S,Peng F,et al.Electrodeposition preparation of octahedral-Cu2O-loaded TiO2nanotube arrays forVisible light-driven photocatalysis[J].Scripta Materialia,2010,63:159-161.
[198]Zhang S,Peng B,Yang S,et al.The influence of the electrodeposition potential on the morphology of Cu2O/TiO2nanotube arrays and theirVisible-light-driven photocatalytic activity for hydrogen evolution[J].International Journal of Hydrogen Energy,2013,38:13866-13871.
[199]Jin Z,Fei G T,Hu X Y,et al.Synthesis and photocatalytic activity of Cu2O/TiO2double wall nanotube arrays[J].Journal of Nanoengineering and Nanomanufacturing,2012,2:49-53.
[200]Zhang J,Wang Y,Yu C,et al.EnhancedVisible-light photoelectrochemical behaviour of heterojunction composite with Cu2O nanoparticles-decorated TiO2nanotube arrays[J].New Journal of Chemistry,2014,38:4975-4984.
[201]Zhao L,Dong W,Zheng F G,et al.Interrupted growth and photoelectrochemistry of Cu2O and Cu particles on TiO2[J].Electrochimica Acta,2012,80:354-361.
[202]Liu Y B,Zhou H B,Li J H,et al.Enhanced Photoelectrochemical Properties of Cu2O-loaded Short TiO2Nanotube Array Electrode Prepared by Sonoelectrochemical Deposition[J].Nano-Micro Letters,2010,2:277-284.
[203]Luo S L,Li Y,Yang L X,et al.Low-temperature,facile fabrication of ultrafine Cu2O networks by anodization on TiO2nanotube arrays[J].Semiconductor Science and Technology,2012,27.
[204]Hou Y,Li X Y,Zhao Q D,et al.Fabrication of Cu2O/TiO2nanotube heterojunction arrays and investigation of its photoelectrochemical behavior[J].Applied Physics Letters,2009,95.
[205]范冬波.化学浴沉积制备金属硫族化合物光电功能薄膜[硕士论文]:北京:北京工业大学,2004.
[206]Yang M,Xu J,Wei J,et al.Fabrication of double-walled carbon nanotube film/Cu2O nanoparticle film/TiO2nanotube array heterojunctions for photosensors[J].Applied Physics Letters,2012,100.
[207]Wang M,Sun L,Lin Z,et al.p-n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities[J].Energy & Environmental Science,2013,6:1211-1220.