Apache Kylin权威指南(第2版)
上QQ阅读APP看书,第一时间看更新

2.1.2 维度建模

维度建模用于决策制定,并侧重于业务如何表示和理解数据。基本的维度模型由维度和度量两类对象组成。维度建模尝试以逻辑、可理解的方式呈现数据,以使得数据的访问更加直观。维度设计的重点是简化数据和加快查询。

维度模型是数据仓库的核心。它经过精心设计和优化,可以为数据分析和商业智能(BI),检索并汇总大量的相关数据。在数据仓库中,数据修改仅定期发生,并且是一次性开销,而读取是经常发生的。对于一个数据检索效率比数据处理效率重要得多的数据结构而言,非标准化的维度模型是一个不错的解决方案。

在数据挖掘中有几种常见的多维数据模型,如星形模型(Star Schema)、雪花模型(Snowflake Schema)、事实星座模型(Fact Constellation)等。

星形模型中有一个事实表,以及零个或多个维度表,事实表与维度表通过主键外键相关联,维度表之间没有关联,就像很多星星围绕在一个恒星周围,故名为星形模型。

如果将星形模型中的某些维度表再做规范,抽取成更细的维度表,让维度表之间也进行关联,那么这种模型称为雪花模型。

事实星座模型是更为复杂的模型,其中包含多个事实表,而维度表是公用的,可以共享。