2.1.1 数据仓库、OLAP与BI
数据仓库(Data Warehouse)是一种信息系统的资料储存理论,此理论强调的是利用某些特殊资料储存方式,让所包含的资料特别有利于分析处理,从而产生有价值的资讯并依此做决策。
利用数据仓库方式存放的资料,具有一旦存入,便不随时间变化而变动的特性,此外,存入的资料必定包含时间属性,通常,一个数据仓库会含有大量的历史性资料,并且它利用特定分析方式,从中发掘出特定的资讯。
OLAP(Online Analytical Process),即联机分析处理,它可以以多维度的方式分析数据,并且能弹性地提供上卷(Roll-up)、下钻(Drill-down)和透视分析(Pivot)等操作,是呈现集成性决策信息的方法,其主要功能在于方便大规模数据分析及统计计算,多用于决策支持系统、商务智能或数据仓库。与之相区别的是联机交易处理(OLTP),联机交易处理侧重于基本的、日常的事务处理,包括数据的增、删、改、查。
●OLAP需要以大量历史数据为基础,配合时间点的差异并对多维度及汇整型的信息进行复杂的分析。
●OLAP需要用户有主观的信息需求定义,因此系统效率较高。
OLAP的概念,在实际应用中存在广义和狭义两种不同的理解。广义上的理解与字面意思相同,泛指一切不对数据进行更新的分析处理,但更多的情况下OLAP被理解为狭义上的含义,即与多维分析相关,是基于立方体(CUBE)计算而进行的分析。
BI(Business Intelligence),即商务智能,是指用现代数据仓库技术、在线分析技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。
如今,许多企业已经建立了自己的数据仓库,用于存放和管理不断增长的数据,这些数据中蕴含着丰富的商业价值,但只有使用分析工具对其进行大量筛选、计算和展示后,数据中蕴含的规律、价值和潜在信息才能被人们所发现与利用。分析人员结合这些信息进行商业决策和市场活动,从而为用户提供更好的服务,为企业创造更大的价值。