1.7.3 无穷小量的比较
由无穷小的性质可知,两个无穷小的和、差、积仍为无穷小,但是对于两个无穷小的商,必须具体分析,不可一概而论.例如,当x→0时,函数x,x2,sinx都是无穷小,但是.
两个无穷小之比的极限的各种不同情形反映了不同的无穷小趋于零的“快慢程度”.当x→0时,观察函数x,x2,sinx趋于零的快慢程度,如表1-4所示.
表1-4
显然,x2→0比x→0“快些”,而sinx→0比x2→0“慢些”,x→0与sinx→0“快慢相仿”.
为了比较无穷小趋于零的快慢程度,引入无穷小的阶的概念.
定义3 设α,β是自变量在同一变化过程中的两个无穷小量,且α≠0,
(1)若,则称β是比α高阶的无穷小,记作β=o(α);
(2)若,则称β是比α低阶的无穷小;
(3)若,则称β与α是同阶无穷小;
(4)若,则称β与α是等价无穷小,记作β~α;
(5)若,k>0,则称β是关于α的k阶无穷小.
显然,等价无穷小是同阶无穷小的特例,即c=1的情形.
由上面的讨论可知,当x→0时,sinx与x是等价无穷小,x2是比x高阶的无穷小,而x是比x2低阶的无穷小.
关于等价无穷小,有一个非常重要的性质,即等价无穷小可以互相代换,通常把这个性质称为无穷小代换原理.
定理3(无穷小代换原理) 设α~α′,β~β′,且极限存在,则
证
例4 求.
解 当x→0时,sin3x~3x,tan5x~5x,所以
显然,利用无穷小代换原理求极限,可以大大简化计算,下面给出常见的等价无穷小.
当x→0时,
x~sinx~tanx~arcsinx~arctanx~ln(1+x)~ex-1;
ax-1~xlna(a>0且a≠1);
当x→1时,lnx~x-1.
例5 求.
解 当x→0时,ex-1~x,所以
例6 .
解
当x→0时,sinx~x,tanx~x,,所以
在上述求极限过程中,使用了等价无穷小代换,但应注意,如果不是乘或除的情况,不能代换,否则可能会得出错误的结果,如
例7 证明:当x→0时,,n∈N+.
证 由于
当x→0时, ,ex-1~x,则
所以,当x→0时, .
例8 求
解 当x→0时,,所以
关于等价无穷小,还有一个重要的定理.
定理4 α与β是等价无穷小的充分必要条件是
α=β+o(β).
推论 设β是无穷小,则β~β+o(β).
例9 求.
解 当x→0时,sin2x~2x,而x3=o(x),由推论1得,x+x3~x,所以