序曲
从柏拉图到宇宙未来的形貌
在伟大的前科学时代,
柏拉图就指出,
我们所见的世界,
只是这个不可见几何形体的反映罢了。
这个观念深得我心,
也和我最知名的数学证明紧密相关。
神以几何造世。
——柏拉图
大约公元前360年,柏拉图(Plato)完成了《蒂迈欧斯篇》,(Timaeus),这是一篇以对话形式呈现的创世故事,对话者包括他的老师苏格拉底(Socrates)以及其他三位贤者:蒂迈欧斯、赫谟克拉提(Hermocrates)、克里底亚斯(Critias)。蒂迈欧斯应该是个虚构的角色,据说他从南意大利的洛克利城来到雅典,是一个“天文学专家,志在理解大自然的本质。”[1]通过蒂迈欧斯之口,柏拉图陈述了自己的万有引力理论(theory of everything),其中的核心角色是几何学。
柏拉图尤其着迷于一组几何形体,这组特别的多面体也从此被称为“柏拉图立体”。这些多面体的各面是全等的正多边形,例如正四面体的四个面是全等的正三角形;正六面体(俗称的正方体)是六个全等的正方形;正八面体是八个正三角形;正十二面体是正五边形;正二十面体则又是由二十个正三角形构成。
柏拉图并不是这些以他为名的立体的发明者,事实上没有人确实知道发明者是谁。不过一般相信是柏拉图的当代学者泰阿泰德(Teaetetus)证明了这五种“正多面体”的存在,并且就只有五种。欧几里得在《原本》(The Elements)一书中,为这些几何形体给出详细的数学描述。
图0.1 柏拉图立体之名源自希腊哲人柏拉图,共有五种:正四面体、正六面体(正立方体)、正八面体、正十二面体、正二十面体。所有面、边、角度都相等(全等)是这些立体独有的特色
柏拉图立体有许多迷人的性质。检视任一种正多面体可以发现,与每一顶点(尖角的点)相邻的多边形数目都一样多;每个多边形的各角都一样大;可以找到一个圆球通过所有的顶点(一般多面体并没有这个性质);而且,顶点的数目加面的数目等于边的数目加2。
柏拉图赋予这些立体形而上学的意义,这也是他的名字与这些立体永远牵连的原因。事实上,根据《蒂迈欧斯篇》的内容细节,正多面体是柏拉图宇宙论的根本要素。在他宏伟的万物架构里,宇宙有四种基本元素:土、气、火、水。如果检视这些元素的微小细节,就会发现它们是由微小的柏拉图立体构成的:“土”由小正方体构成;“气”由正八面体构成;“火”是正四面体;“水”是正二十面体。关于正十二面体,在《蒂迈欧斯篇》中柏拉图写道:“还剩下一种构造,第五种元素,上帝用于整个宇宙,编织各种物象于其上。”[2]
受益于两千多年来的科学发展,现在看来柏拉图的猜想当然很可疑。虽然,今日我们对于宇宙的基本构造元素并没有绝对一致的结论,最后被证明为正确的,或许是轻子与夸克,也许是理论上的次夸克粒子“先子”(preon),又或者是还在理论阶段却更微小的“弦”,不过我们很确定,并不是把土、气、火、水编织在巨大的正十二面体上而已。我们也不相信,仅仅由柏拉图立体的形状就能决定这些基本元素的性质。
话说回来,柏拉图从未宣称他完成了大自然的确定理论,他认为《蒂迈欧斯篇》只是“可能的解释”,是当时所能得到的最佳见解,并且承认他之后的学者,尽可以去改良他的理论,甚至是大幅修改。就像蒂迈欧斯在他的对话中说的:“如果有人测试我的宣告,发现并非事实,我们将恭贺他获得荣耀。”[3]
柏拉图的想法无疑有许多错误,但从宽广的角度审视他的思想,柏拉图显然也有正确的地方。这位卓绝的哲学家在承认他可能犯错,但以他的观念为本的理论却可能成真时,展露了或许是最高的智慧。举例来说,正多面体具有高度对称性,正十二面体和正二十面体有60种不改变其呈现的旋转方式(60恰巧是其面、体边数的两倍的事实,并非偶然)。当柏拉图以这些形体作为宇宙论的基础时,他正确地指出了:任何企图描述大自然的可行理论中,对称性必须是它的核心性质。如果想要构筑万有理论,统一所有的作用力,而且所有构成要素只需遵守一两组法则,我们就必须发现潜藏其中的对称性,因为这是足以生发万物、以简驭繁的法则。
显然地,这些形体的对称性质直接源自其几何形状。这是柏拉图的第二个重要贡献:除了理解数学是测度宇宙的关键之外,他提出了今日所谓物理几何化(geometrization of physics)的思考理路,就像爱因斯坦所促成的大飞跃一样。在伟大的前科学时代,柏拉图就指出大自然的元素与其性质,还有作用其上的力,可能都可归源于某个潜藏于幕后的几何结构,它主导了这一切。换句话说,我们所见的世界,只是这个不可见几何形体的反映罢了。这个观念深得我心,也和我最知名的数学证明紧密相关(对于曾听说过我名字的人而言)。虽然有些人可能觉得这太牵强,只是大张旗鼓为几何宣传罢了,但是,这个想法或有真意,各位不妨拭目以待,静心阅读下去。