让数据成为生产力:数据全生命周期管理
上QQ阅读APP看书,第一时间看更新

2.1.3 数据的处理工具

在分析方式以及处理和操作所需的工具和人员方面,结构化数据以及非结构化数据也有所不同。非结构化数据通常借助数据堆叠、数据挖掘等技术进行分析,这些技术可以处理元数据并得出较为一般性的结论。结构化数据则多采用数学方法进行分析,例如,数据分类、聚类和回归分析。在工具和技术方面,结构化数据比较便于管理和使用分析工具。用于处理结构化数据的工具包括关系数据库管理系统(RDBMS)、客户关系管理(CRM)、联机分析处理(OLAP)和联机事务处理(OLTP)等。而能够处理多种格式的大型数据集的软件,通常用于管理和分析非结构化数据。用于管理非结构化数据的工具包括NoSQL数据库管理系统(DBMS)、AI驱动型数据分析工具以及数据可视化工具等。

非结构化数据通常需要由训练有素的专家进行管理,并且相较于结构化数据,其软件处理工具也须具备更高级的AI和预测建模功能。机器学习便是用于分析非结构化数据的技术策略之一。