上QQ阅读APP看书,第一时间看更新
1.1.1 单量子比特
在经典计算中,经典比特的状态用0或1表示,而在量子计算中可以用、、、 表示量子比特的状态,“”是狄拉克(Dirac)括号。为了与经典计算的二进制规则兼容,本书后续章节只使用、这两种状态。量子比特是可以处在多种状态的叠加态的,也就是说量子比特可以处在、这两种状态的叠加状态,那怎么表示这种叠加状态呢?可以把量子比特表示为二维复向量空间中的一个单位向量。设、为的一组基,则一个量子比特可以表示为
(1.1)
其中,、都是复数,称为振幅,且满足归一化条件。
接下来,考虑将 表示为一个特定的形式。这种形式通常称为布洛赫(Bloch)球, 如图1.1所示。
布洛赫球的北极表示,南极表示。根据布洛赫球表示法,可以将任意单量子比特量子态写为
(1.2)
其中, 和 是实数, 是任意相位。这种表示方式的物理意义是, 和 描述了 在布洛赫球上的位置,描述了 的全局相位。由于对观测值没有实质性的影响,所以这里可以忽略。进而,可以表示为
(1.3)
图1.1 布洛赫球
显然,这里对应球上的点。
下面证明如果将 表示为式(1.2),则有 和 。首先,将式(1.2)代入式(1.1):
(1.4)
这样,可以得到:
(1.5)
然后,计算 :
(1.6)
这证明了第一个等式。同时,第二个等式也得到了验证。
因此, 和 是等价的。