制造业数字化转型实践
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.1 制造业数字化转型现状

制造业是数字经济的主要领域之一,针对我国制造业数字化转型现状,本书从如下三方面进行阐述。

1.1.1 需求个性化和供给标准化的矛盾

我国制造业分为三大类:轻纺工业、资源类加工工业和机械电子类制造工业。由于制造业覆盖的范围非常宽广,有三大原因决定了不同类别的制造业的企业数字化转型路径和方法是不一样的。

一是不同行业的制造形态差异非常大。比如纺织服装、食品饮料、电子制造、重型机械等行业的制造形态基本风马牛不相及。纺织行业的数字化解决方案对于电子制造行业和重型机械行业来说,基本没有太大的参考价值;同样,食品饮料、电子制造、重型机械行业的数字化解决方案对于其他行业也没有太多的借鉴。

二是同行业中产业链上下游企业和不同细分行业的制造形态也差异非常大。以汽车行业为例,至少覆盖机械、注塑、电子电气、玻璃、纺织等几大细分行业,这些细分行业的制造技术、工艺流程、设备设施等相差十万八千里;另外,即使都属于为整车厂提供机械件的供应商,比如传动系统、车门、座椅骨架等企业的差异也非常大,它们的数字化转型需求也注定不同。

三是同行业竞争对手之间的差异也可能非常大。生产同种产品的不同企业,由于制造技术、工艺流程、设备选型、管理方法、组织结构的差异,决定了它们的数字化转型需求也是不一样的。

以上这些差异决定了企业在进行数字化升级转型时,需求都是个性化的;但是从供给方来看,解决方案的标准化程度却越来越高。这就形成了需求个性化和供给标准化间的矛盾,并且这个矛盾越来越突出。供给方本身也知道需求方的需求是个性化的,但还是在不断提高解决方案的标准化程度,这是为什么呢?

一是定制化供给不能带来巨大的经济收益。一般供给方在刚涉足市场时,需要有具体的应用场景,针对种子客户,一般会提供定制化服务来满足客户的个性化需求,这个过程供给方基本没有经济收益。因此供给方在积累了一定服务经验后,就开始提高解决方案的标准化程度,希望通过复制解决方案来产生经济收益。

二是定制化服务难度大。面对不确定的服务场景,需要拥有不同技能的人才,针对超出企业服务能力的需求,还要临时招聘或者购买服务,这样导致团队很难组建且管理难度大,因此供给方会尽量避免出现这种局面。

三是服务需求方不愿意为定制化服务支付更高的成本。每家制造业企业在谈自身需求时,都会强调自身的独特性;但是在和能够满足自身个性化需求的服务商谈合作时,大多数企业不愿意为定制化服务支付高于标准化服务的成本,再加上企业逐利的本性,导致市场上定制化服务商的数量减少。

四是投资方多数不看好定制化的商业模式。一般提供数字化解决方案的企业都是科技型创新创业企业,开发产品和解决方案需要一定的投入,作为投资人一般不偏向投资提供定制化产品和服务的企业,因为定制化不能复制,不能产生规模收益。

针对需求个性化和供给标准化的矛盾,部分行业头部企业自己组建团队,自行开发解决方案。例如无锡某智能制造标杆企业,由于找不到适合自身的解决方案,就组建了近百人的软件开发团队和200多人的硬件和自动化开发团队。这么庞大的团队,对于大多数制造业企业来说,基本不能自给自足,只能去市场上寻找匹配度尽可能高的解决方案,针对不能满足企业个性化需求的部分,再进行相应的二次开发。需要注意的是,无论是企业自己组建团队,还是去市场上寻找解决方案,都需要在智能制造顶层构架设计的指引下进行,否则会事倍功半或者功亏一篑。

1.1.2 顶层构架设计不足

当前企业在进行数字化转型前,普遍没有进行顶层构架设计,或者顶层构架设计不足。这导致企业数字化转型没有方向和层次,从而增加了数字化转型失败风险和成本,延长了数字化转型窗口期。

企业数字化转型缺乏顶层构架设计的现象非常突出。主要有两大原因:一是部分企业没有认识到顶层构架设计的重要性,只是以解决问题为导向逐步实施,这样不能从企业盈利和发展的角度保证数字化转型成功;二是缺乏有效的顶层构架设计方法论。2016年之前,笔者就认识到了顶层构架设计的重要性,随后结合多年为企业提供智能制造顶层构架设计的实践经验,在2021年提炼出来了智能制造顶层构架设计“2347”方法论,该方法论是业界第一套完整的智能制造顶层构架设计方法论,在本书第5章会详细介绍。

在智能制造顶层构架设计的指引下,以企业中长期战略目标和数据赋能场景为导向,持续推动制造业企业数字化升级转型,是制造业企业高质量发展的关键所在。

1.1.3 数字化人才培养工作不成熟

制造业数字化转型需要大量的数字化人才,由于数字化涉及众多知识领域,属于前沿的综合性学科,数字化人才培养工作目前还不成熟,任重道远。

当前数字化人才培养有政府、企业和高校三大主体。2023年,中国成立了国家数据局,负责协调推进数据基础制度建设,统筹数据资源整合共享和开发利用,统筹推进数字中国、数字经济、数字社会规划和建设等。地方政府也陆续设置了数据管理相关职能部门,政府机构需要一大批懂数据管理的工作人员,也在积极推动各种数字化人才培养工作。企业是数字化人才的主要需求方,也在积极探索数字化人才的培养方案,部分企业还设立了相关的数字化部门。但是,目前企业内部还没有成熟的数字化人才培养模型和方案,很多企业是通过团队合作,将数字化工作分解给不同的职能人员去执行。高校是数字化人才培养的主力军,众多高校都开设了智能制造相关专业,但是在智能制造课程规划、教材可用性、师资培养、教学模式等方面还不成熟,还需要更加系统的规划和进一步完善,以培养批量的数字化复合型人才。

本书第4章针对企业数字化人才培养体系进行了初步探讨。