人工智能觉醒
思考的过程,能否由机器参与?
人类对人工智能的探索并不是独立于对计算机和互联网的研究,相反,这三者的发展存在一个并行的过程,三者之间相互促进、相辅相成。
人工智能的萌芽可以追溯到20世纪40年代,心理学家沃伦·麦卡洛克和沃尔特·皮茨首次提出人工神经元模型的概念,代表神经元接收和处理信息的机制,他们的理论奠定了神经网络基础。
而最为人所知的是图灵于1950年发表的论文《计算机器与智能》(Computing Machinary and Intelligence),对“机器能否思考”这个问题进行的阐述。文章对查尔斯·巴贝奇的差分机的理念进行了分析比较,认为巴贝奇的计算机理念属于机械式计算,而机器要代替人类必须要有电子计算机。图灵由此引入了电子计算机的概念,并将其分为三个部分:储存部分、执行单位和控制。在这篇论文中,图灵前瞻性地提出了“机器学习”(machines learning)的概念,这一理念在20世纪80年代得以延伸落地。
1956年美国科学家约翰·麦卡锡组织了达特茅斯会议,会议提出了“人工智能”的概念,至此AI正式走上历史舞台。此后AI技术发展进入了一个快车道,完全信息的对抗、机器定理证明和问题求解、模式识别、基于自然语言的人机对话等技术理念相继诞生。
世界上第一台具有一定对话能力的聊天机器人诞生于1966年,由麻省理工学院约瑟夫·维森鲍姆制作了一台名为“ELIZA”的机器人。ELIZA并不具备真正意义上的理解能力和分析能力,只是通过文本的拆解和重复,实现一定程度的“对话”,这和我们今天所谈的人机交互相距甚远。但对于人工智能的发展,这是一次重要的尝试,让人工智能以一种最直观、最具体的方式呈现出来,某种程度上也是图灵关于机器思考能力问题的延续,如果机器具备思考能力,那么它将如何体现出来呢?
20世纪60年代中叶,人工智能“专家系统”的概念被提出,它的核心方法论是模仿人类专家的知识和推理方式来进行决策。它包括两个部分——知识库和推理引擎,知识库是特定领域知识的合集,而推理引擎相当于它的思考模式。通过这种方式,能够对输入的内容进行分析、判断和解释。
80年代,人工智能的发展进入到了机器学习的阶段。美国计算机科学家汤姆·米歇尔在《机器学习》一书中对机器学习进行了定义:如果用变量P来衡量计算机程序在任务T当中的性能,该性能随着经验E的提升而增加,则称计算机程序从经验E中学习了任务T和衡量指标P,即学习过程Process<P,T,E>。这个时期,人们思考机器学习是什么以及它要做什么,这个过程可以划分为三个要素:模型、策略、算法。这三个要素对于人工智能整体都是至关重要的,模型是机器学习产出的函数,输入数据即得到结果,策略是学习的方式和最优选择的模型,算法是以历史数据为依托,寻找未知参数,形成最优解的模型。
经历了一段时间的发展后,人工智能从学术和技术角度逐步有了清晰的脉络,建立了相对清晰的技术和理论体系,包括深度学习、自然语言处理、计算机视觉、数据挖掘等。总体的思路就是让人工智能具备一些类人类的能力,比如视觉能力,人工智能能够“看见”物理世界中的场景,实现人脸识别、图像识别等功能;再如听觉能力和理解人类自然语言的能力、将输入的语音转化为文字的能力等。
20世纪90年代之后,人工智能发展的速度加快,同时一些实际应用场景也让人工智能进入了大众视野,使人们更加直观和深刻地感受到技术的进步。1997年IBM的机器人深蓝(Deep Blue)战胜了国际象棋冠军加里·卡斯帕罗夫。在深蓝的设计方案中,这是一个由两个2米高的立式机箱、500多个处理器和216个加速芯片组成的机器,能够预测对方棋手的基本走位和评估可能的结果,其能力可达每秒钟探索1亿种可能的棋位。虽然深蓝在赛后即退役,但这一事件第一次引发了普罗大众对人工智能的认知热潮。在后来的发展历程中,人工智能击败人类的戏份再次上演。比如,2016年谷歌的AlphaGo计算机程序在围棋比赛中击败了世界冠军李世石,2018年OpenAI的计算机程序OpenAI Five在Dota 2比赛中击败了人类顶尖玩家,并且平均天梯分数超过4200分。
2001年后的人工智能发展,呈现出全新的特点,这一时期互联网的快速发展带来了信息和数据量的指数级增长,从而为人工智能的快速发展提供了前所未有的良好条件。数据提供的信息就像植物生长所需的肥料,使其汲取养分后茁壮成长。那么,数据在人工智能的发展过程中扮演了什么样的角色呢?