智能网联汽车建模与仿真技术(含实验指导)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.1.2 智能网联汽车环境感知传感器

自动驾驶汽车在传统汽车的基础上扩展了视觉感知功能、实时相对地图功能、高速规划与控制功能,增加了全球定位系统天线、工业级计算机、GPS接收机、雷达等核心软硬件。环境感知系统通过各种传感器采集周围环境基本信息,是自动驾驶的基础,主要包括毫米波雷达、激光雷达、超声波传感器、视觉传感器等。

环境感知是通过安装在智能网联汽车上的智能传感器或V2X技术,对道路、车辆、行人、交通标志、交通信号灯等进行检测和识别,主要应用于先进驾驶辅助系统(ADAS)和自动驾驶系统(ADS),保障智能网联汽车安全、准确到达目的地。

1.超声波传感器

超声波传感器是利用超声波的特性,将超声波信号转换成其他能量信号的传感器,具有频率高、波长短、绕射现象小等特点,对液体、固体的穿透性较强,用于自动驾驶汽车可帮助车辆探测外部环境并指导车辆对此做出适当的反应。超声波传感器能够发出高于人类听觉水平的高频声音。

超声波传感器初期主要用于车辆制动辅助系统和倒车雷达,用来检测障碍物以避免碰撞和擦蹭,目前已被研究应用在自动泊车和自动制动系统中。

自动泊车辅助系统利用超声波传感器提供的停车区信息和车辆位置,控制汽车节气门、制动器和转向,从而完成车库停车和侧方位自动泊车。泊车传感器通过声呐技术来计算与目标物体的距离或方向,汽车制造商通过在后保险杠上安置2~4颗传感器来部署自动泊车系统,这样可以确保探测距离在2~2.5m,并将测量到的距离用蜂鸣声传达给驾驶人。

超声波自动制动系统是通过松开加速踏板同时采取制动来避免前侧碰撞,放置在汽车车头的超声波传感器会发射超声波,在接收到前面物体的反射波后确定汽车与物体之间的距离,进而通过伺服电机自动控制汽车制动系统。

2.毫米波雷达

毫米波雷达利用无线电波对物体进行探测和定位。

现在的车载毫米波雷达系统主要有用于中短测距的24GHz雷达和长测距的77GHz雷达2种,其中77GHz的优势主要在于距离和速度测定的准确性,此外其角分辨率也更加精准。毫米波雷达可有效提取景深及速度信息,识别障碍物,有一定的穿透雾、烟和灰尘的能力,但在环境障碍物复杂的情况下,由于毫米波依靠电磁波定位,因此电磁波出现漫反射时,漏检率和误差率比较高;固态雷达芯片系统很常见,体积小,价格低廉。它们具有良好的频率范围,但与其他传感器相比,分辨率更差。固态雷达芯片系统在明暗条件下同样能够很好地探测和定位。77GHz系统受雾、雨和雪的干扰影响较小。

车载毫米波雷达无法进行颜色、对比度或光学字符识别,但在测定当前交通场景中目标的相对速度方面非常准确且时效性高。

3.激光雷达

激光雷达依靠的是激光而不是无线电波。除了激光发射器,这套系统还需要一个敏感的接收器。激光雷达系统能探测静态和动态物体,并提供被探测物的高分辨率的几何图像、距离图像和速度图像。

激光雷达目前是大而昂贵的系统,必须安装在车辆外面。其可分为单线和多线激光雷达,多线激光雷达可以获得极高的速度、距离和角度分辨率,形成精确的3D地图,是智能驾驶汽车发展的技术路线,但是成本较高,也容易受到恶劣天气和烟雾环境的影响。按照有无机械旋转部件,激光雷达也可分为机械环绕式激光雷达、固态激光雷达和混合固态激光雷达三种。机械环绕式激光雷达带有控制激光发射角度的旋转部件,而固态激光雷达则无需机械旋转部件,主要依靠电子部件来控制激光发射角度。由于内部结构有所差别,三种激光雷达的大小也不尽相同,机械环绕式激光雷达体积更大,总体来说价格更为昂贵,但测量精度相对较高。而固态激光雷达尺寸较小,成本低,但测量精度相对会低一些。混合固态激光雷达介于两者之间。目前,固态激光雷达已初步实现了量产,是未来发展趋势。

与其他雷达相比,激光雷达在所有光线条件下都能很好地工作,但激光雷达无法检测颜色或对比度,也无法提供光学字符识别功能。在汽车行业,激光雷达是个相对较新的系统,正越来越受欢迎。谷歌的自动驾驶汽车解决方案使用激光雷达作为主要传感器,但也使用其他传感器。

激光雷达在工业和军事领域已经应用。但是由于激光雷达拥有360°全景视角的复杂机械透镜系统,单个成本高达数万美元。因此,激光雷达暂时还不能像毫米波雷达一样在汽车产业大规模部署。

4.视觉传感器

视觉传感器是指利用光学元件和成像装置获取外部环境图像信息的仪器,通常用图像分辨率来描述视觉传感器的性能。视觉传感器的精度不仅与分辨率有关,而且同被测物体的检测距离相关。被测物体距离越远,其绝对的位置精度越差。

视觉传感器成本低、体积小且分辨率高。与其他传感器不同,视觉传感器具有颜色、对比度和光学字符识别功能,但受光线条件影响,其探测范围和性能会随着光线水平变暗而降低。

通过对采集图像进行计算机算法分析,车载摄像头能够识别行人、自行车、机动车、车道线、路牌、信号灯等环境信息,进而支撑实现车道保持辅助、车道偏离预警、前向碰撞预警、行人碰撞预警、全景泊车、驾驶人疲劳预警等功能。