1.2 工业大数据的典型应用场景
1.2.1 业务领域视角
对于未来制造的发展模式,业界有很多好的提法,包括精益(Lean)制造、柔性(Flexible)制造、绿色(Sustainable)制造、云(Cloud)制造、敏捷(Agile)制造、自组织(Holonic)制造、数字(Digital)制造、智能(Intelligent)制造、智慧(Smart)制造等,以应对不同需求(如成本和竞争压力、创新速度、个性化需求、可持续性发展等)。工业大数据是支撑制造模式转型的重要使能技术。
在工业数据的应用模方面,业界从不同角度提出了很多类似的想法。德国“工业4.0”强调通过横向全供应链集成、纵向全自动化集成(智能工厂)和设计工程全数字化集成3条技术路线,构建基于物理信息系统(CPS)的全新生产环境,实现以数字制造为核心的第四次工业革命[2]。美国NIST从产品生命周期(设计、工艺规划、生产工程、制造、使用和服务、废弃和回收6个阶段)、生产系统(设计、修建、调试、运营和维护、退役和回收5个方面)和商务(采购、制造、交付、售后等供应链活动)3个制造生命周期维度构建智慧制造(Smart Manufacturing System)[6]。学术界也提出过类似的想法。Porter James与Heppe Imann探讨了互联的产品:结合大数据分析,打造服务型制造模式,柔化制造业和服务业的固有边界[7]。中国电子技术标准化研究院的《工业大数据白皮书(2019版)》将工业大数据的典型应用场景概括为智能化设计、智能化生产、网络化协同制造、智能化服务和个性化定制[8]。日本RIETI研究中心和PwC也从业务部门和业务模式的角度提出了类型框架。
综上所述,结合实践经验,我们总结了工业大数据在7大业务领域的应用场景,如图1-1所示。
图1-1 工业大数据在7大业务领域的应用场景