感知力
上QQ阅读APP看书,第一时间看更新

看世界的新方式

常识告诉我们,世界就像它所呈现的那样,我们对世界的经验就是其本来面目,所见即真实。当公交车迎面而来时,我们总是在路边等候,而不是走到它的前面,因为我们坚信,过往经验是真实可靠的。这种朴素实在论的观点认为,世界与我们的经验之间存在着一一对应的关系。

然而稍加审视,我们便会发现朴素实在论与事实不符。首先,视觉的刺激信息(射入人眼的光)投射到眼睛底部的视网膜上(神经系统的光感受器细胞所在的位置)形成了图像。该视网膜图像是二维、倒立的,且不具备在我们的知觉中普遍存在的恒定属性。例如,物体在视网膜上所成图像的大小随距离而变化(物体越近,图像越大),然而我们对物体大小的感知却是恒定的。拿起一支铅笔,将手臂向前伸直,然后让它逐渐向面部移动。注意,铅笔的外观变大了,但我们对其实际大小的感知却保持不变。

那么,当铅笔在眼中所成图像的大小随着距离的变化而发生改变时,我们为什么会认为其大小是恒定的呢?一种现成的解释是,我们知道铅笔的大小,且当我们来回移动它们时,其尺寸不会发生改变。在哲学上,这种解释被称为“唯心主义”,它认为,不甚精确的视网膜图像会随着人们在进化或个人学习经验中所获知识和记忆的积累而扩充和增强。19世纪伟大的医师、物理学家赫尔曼·冯·亥姆霍兹将这一增强过程命名为“无意识推理”。根据他的说法,如果你感知到某个物体是铅笔,那么你就会感知到它具有铅笔所具有的那些属性。

在过去的150年里,“无意识推理”作为一种被普遍认可的机制一直占据着主导地位,通过这一机制,视网膜图像可以转化为对世界的感知。然而,吉米·吉布森并不这么认为。他认识到,“无意识推理”的问题在于这一过程永远无法开启,根本起不了作用。婴儿需要先了解世间万物的所有属性,才能感知到事物具有这些属性。[1]但这些知识从何而来?比如,如果婴儿看到的只是铅笔投射到眼底的图像,而图像的大小随距离的变化而变化,那么他们应该如何获知铅笔的正确尺寸呢?婴儿应当如何学习世界上真实存在的事物?这不太可能。吉米认为,整个过程是站不住脚的。“我们应该重新开始。”他说。然而,科学家也和其他人一样,不喜欢改弦易辙,尤其是在他们职业生涯的晚期。尽管吉米拥有了一些追随者,但大多数情况下,吉布森夫妇和他们的学生不得不孤军奋战。

那么,我们如何“重新开始”?和许多科学家一样,吉米的生活经历塑造了他的世界观。吉米在密歇根湖岸边长大,他的父亲是一名列车员。在父亲执勤的列车上,小吉米常常站在车头或车尾遐想联翩:为什么当列车向前飞驰时,世界似乎变得越来越大?当他站在车尾时,世界却缩成了地平线上的一个点?这些经验告诉他,当我们移动时,视觉世界中的所有事物也会随周围环境有规律地移动。这种一切都随着我们的移动而移动的方式叫作“光流”,它很容易被注意到。比如,回想一下夜晚在乡村公路上开车的情景。附近的栅栏似乎移动得很快,而远处的山丘则移动甚缓。驾驶者观察到的物体移动速度随距离远近而存在的差异,实际上展示出它们的相对距离——快速移动的物体在你附近,缓慢移动的物体距你较远。距离可以通过光流得出——当我们开车、跑步或步行时,物体经过我们身边的速度取决于我们行进的速度,以及这些物体距离我们的远近。距离不需要推断,因为运动的观察者能从可知信息中将它们直接推导出来。类似地,物体在视网膜上的投影随着物体接近或远离我们而增大或缩小,它们的实际尺寸可以从其不断变化的投影尺寸中得出。例如,铅笔的实际尺寸可以通过你将它来回移动时大小的变化来确定。这就是吉布森理论的基本观点:知觉所依据的信息并非静态的、平面的视网膜图像,而是光流,即观察者在移动时目标物体所发生的运动。

吉米于1928年起任教于史密斯学院,直至1942年,这位年轻的视觉研究者因战事而被征入美国陆军航空队。他的指挥官提出了一些疑问,与他8岁时的想法很相似:飞行员如何让飞机着陆?我们如何帮助他们做得更好?同样地,一个人如何从一个地方走到另一个地方?这些问题看似基础,但百年来的视觉研究成果未能解答吉米的疑问。当时,知觉研究尚未触及这些问题。

吉米在美国陆军航空队服役时发现,我们所看到的并非一个以厘米和毫米为度量单位的客观世界。确切地说,我们所感知到的是吉米所说的“可供性”。他后来在《视觉世界的知觉》一书中对此进行了详细阐述,并凭借这本书在自己的领域声名鹊起。

“可供性”指的是我们适应特定情境的方式,或者物体及其表面形态为具有特定身体和行为技能的有机体所提供的行动可能性。对于一个体格健全的人而言,坚实的地板可供行走,池塘的水面则不行。石头可供抓握和抛掷,只要尺寸得当,重量适宜。吉米写道:“环境可供性指的是环境为动物所提供的内容,及其给予或者贡献的一切事物,无论好坏。字典中可以找到动词‘提供’,但是找不到名词‘可供性’——我创造了这个词,它与动物和环境二者皆有关联,没有现成的术语可与之对应。它揭示了动物与环境之间的互补性。”[2]吉米称自己对知觉的描述为“生态方法”。他指出,知觉是有生命的有机体在积极探索其所处环境的过程中获得的一种能力。早在婴儿时期,人们就可以感知到这些可供性的存在,而它们在后来也将继续构建我们的日常经验,无论是扔球、投资,还是决定是否信任某人。

吉米断定,只要有机体可以自由地移动并对其周围环境进行探索,视觉信息便是充足的,无须借由知识、记忆或无意识推理来补充。你所看到的取决于你能做到的事情。更确切地说,一个行动自由的有机体所看到的,是其自身目的驱动行为的视觉产物。步行者会体验到世界如何在她行走时从自己身边经过,同时也会体验到与步行相关的能量消耗。她将发现可抓握物体的视觉特性,以及可以步行上升的斜坡。她将察觉到自己所处世界的可供性。这并非朴素实在论,因为有机体所感知到的世界的可供性,因其物种、身体、行为方式以及独特的个体差异(例如生活经历、目标和期望等)而有所不同。这也不是唯心主义,因为对可供性的感知并不依赖于既存(或者说“先验”)知识。生态现实主义认为,我们所感知到的世界并非其本来面目,而是我们所理解的世界。这就是吉米的见解,他向身体如何影响大脑这一问题的答案又迈进了一步。

“吉布森项目”不仅是吉米的项目,也是杰姬的项目。[3]年轻的吉布森教授曾是她的老师,他们二人是在史密斯学院的毕业游园会上相识的,当时吉米负责招呼客人,而杰姬负责向客人提供潘趣酒。结构性性别歧视的存在使杰姬在很长一段时间里都无法获得学术职位。而康奈尔大学有一项“反裙带关系”规定,这意味着当吉米在那里工作时,她不能同时在该校担任教职,所以她只能做一名无薪酬的研究助理。她曾被几个实验室拒之门外,因为做实验非“淑女”所为。在心理学领域,发展心理学这一分支被认为是“妇女的工作”,对她来说较为合宜。

杰姬的研究始于康奈尔大学的行为农场。在那里,她饲养了一批用于心理学研究的动物,包括山羊、小猫、乌龟和老鼠。人类婴儿和人类以外的其他动物无法向我们讲述有关其自身经验的任何信息,因此必须展开精准巧妙的行为实验,并通过他们在实验中的行为表现来推断其心理活动。杰姬与理查德·沃克展开合作,后者是康奈尔大学的一名教员,具有实验室准入权,这一点对他们的研究至关重要。他们一起设计完成了20世纪中叶最具代表性的心理学实验之一。

吉布森和沃克在1960年进行的这项实验因他们所制作的实验装置“视觉悬崖”而为人们所熟知。[4]尽管你可能并不想在家里带宝宝尝试这个实验,但制作这个装置非常容易。实际上,“视觉悬崖”就是一张婴儿可能从上面跌落下来的桌子。将厚玻璃板放在桌子上,一直延伸到婴儿可能跌落的部分上方,就构成了一个“视觉悬崖”。你创造了一种视错觉。如果体重够轻(比如一个婴儿或者一只小猫),就可以从“悬崖”上爬过去,并获得来自透明表面的支撑,就像摩天大楼、大峡谷等一些地方所采用的令寻求刺激者感到兴奋的玻璃地板。

实验是这样进行的:小约翰尼(所有男婴被试)被放在桌面中央,“悬崖”的边缘附近。妈妈先从像“悬崖”的一侧呼唤他,然后再换到看起来较浅的一侧。正如吉布森和沃克在1961年发表于《科学美国人》杂志的文章中所写,这种视错觉起了作用。他们写道:“当母亲站在像‘悬崖’的一侧呼唤时,许多婴儿爬向了远离母亲的另一侧;另外一些婴儿则哭了起来,因为如果不穿过明显的深坑就无法到达母亲身边。这一实验表明,大多数人类婴儿一旦学会爬行,就具有了辨别深度的能力。”这27个婴儿中,每个婴儿都至少有一次快乐地爬过了桌面较“浅”的一侧,但只有3个宝宝敢于爬过明显的“深渊”。

人类以外的其他动物则是另外一种情形。如果它们是被正常饲养的,它们会避开“悬崖”的“深渊”。但是,有些小猫是在黑暗环境中长大的,这些小猫的视力很好,然而它们缺乏四处走动,以及在有光照的环境中进行探索的经验。当这些小猫被放到“视觉悬崖”上时,它们走向较“深”或较“浅”一侧的频率相同。从这些小猫的行为来看,它们似乎并不觉得走下“悬崖”有什么不对。然而,当这些小猫在光线充足的环境中正常生活一周之后,它们的表现也和那些正常长大的动物一样,会竭力避开“视觉悬崖”较“深”的一侧。

这些实验结果在当时乃至现在,都具有重大而深远的意义。首先,这些实验结果表明,“能看见”和“理解所见之物”是有区别的。该实验中所有小猫的视力都很好,即使是猫咪验光师也无法将它们区分开来。然而与正常饲养的小猫不同,在黑暗环境中饲养长大的小猫起初并不知道应该避免走下“悬崖”。这就引出了该实验的第二层深意:如果让小猫在其视觉世界中自由探索,它将很快了解到其周围世界的可供性,例如,它将学会在某些物体的表面而非稀薄的空气上行走。不过,由于实验本身的局限性,这项研究为该领域留下了一些悬而未决的问题。显然,人类婴儿不应在黑暗的环境中被抚养长大,并且必须长到足够大的时候(五六个月大)才能爬行。当我们对爬行中的婴儿进行测试时,他们会避开“视觉悬崖”较“深”的一侧,这表明他们对爬下“悬崖”的后果有所了解。但是那些还不会爬行的婴儿呢?他们知道从“悬崖”上掉下去会发生什么吗?

20世纪90年代初期,由加州大学伯克利分校心理学家约瑟夫·坎波斯领导的研究团队[5]试图对上述问题做出解答。[6]首先他们测试了7个月大的婴儿,其中1/2的婴儿已经开始爬行,另外1/2则没有。通过这些婴儿身上所佩戴的心率监测器,他们能够评估出婴儿对“视觉悬崖”的情绪反应。婴儿的父母被安排在隔壁的房间里,然后由女性实验人员将婴儿放在“视觉悬崖”的较深的一侧。结果是:已开始爬行的婴儿的心率上升了,这表明由某位陌生人将他们带入深坑激发了他们的情绪(“啊!”)。而那些还不会爬的婴儿的心率则下降了,表明他们注意到了“悬崖”,且对它产生了兴趣,但“悬崖”并未激发任何情绪或使他们受到惊吓。显而易见,还不会爬行的婴儿并不知道“深度”意味着什么——他们并未因可能跌至“视觉悬崖”深处而受到生理上的刺激。为什么爬行能力会影响婴儿对掉下“悬崖”的理解呢?在解答这一问题的过程中,坎波斯及其同事受到了一篇科研论文的启发。这篇文献是发展心理学领域最为深入的研究成果之一,文章指出,诸如爬行、走路之类的自主位移是意义构建的关键环节。

20世纪60年代初,在杰姬·吉布森完成其“视觉悬崖”实验几年之后,麻省理工学院的视觉研究先驱理查德·赫尔德以猫为实验对象进行了另一组研究,这些研究后来被称为“小猫旋木”实验。[7]在这些研究中,成对的小猫在实验阶段获得了视觉体验,其他时候则被饲养在黑暗的环境中。在有光照的实验阶段,两只小猫被放置在一个小型转盘上,其中一只小猫可以控制自己的行走,而另一只则依靠转盘被动地移动。想象一个没有马的旋转木马,但是它有两个篮子,彼此呈180度,每个篮子里有一只小猫。其中一只篮子的底部有4个洞,小猫的腿可以穿过这些洞伸到地面,这样当小猫走路时就可以驱动旋木。另一只小猫所在的篮子则没有洞,所以这只小猫只能被动地移动。在这样的饲养方式下,两只小猫的视力都很好,它们的视觉系统发育正常。但从它们的行为表现来看,处于被动状态的小猫似乎并不清楚自己眼见之物意义何在。它们在控制爪子方面存在问题,也无法区分“视觉悬崖”的较深的一侧与较浅的一侧;当有物体靠近眼睛时,它也不会眨眼。

坎波斯及其团队利用从“小猫旋木”研究中汲取的经验,来破解人类婴儿到底是如何获得理解高度的能力的。继“小猫旋木”实验之后,研究人员又以婴儿为对象进行了一组新的实验。他们将参与实验的婴儿平均分为两组,其中一组婴儿带着“婴儿学步车”回到家中,而对照组则没有。“婴儿学步车”是一种迷你小车,婴儿可以被安置在一个座位上,其双脚可以触及地面,类似于“小猫旋木”中驱动旋木的小猫所处的状态。“学步车”的座位四周都装有保险杠,下方有轮子支撑。就这样,一个尚不会爬行的婴儿现在可以依靠自己的双脚在房间里四处移动。在这组实验中,处于步行状态下的婴儿在返回实验室之前必须完成至少32个小时的自主位移。接下来,实验人员再次使用心率监测器,将婴儿放到“视觉悬崖”的深处。这一次,有行走条件的婴儿因心率升高而触发了警报,对照组的婴儿则没有。尽管这些婴儿的行走能力是在婴儿学步车的“人为”协助下获得的,但他们对“悬崖”的反应与那些在自然状态下已开始自主爬行的孩子是一致的。

我们可以从“小猫旋木”以及随后的“婴儿学步车”研究中了解到有关婴儿发展的一些关键内容。从更为一般的意义上讲,这些内容也关系到经验如何塑造了我们的生活。首先是“能动性”问题,为了充分理解正在经历的事情,我们需要参与经验的创造过程。我们在学习爬行和走路的过程中理解了我们所看到的事物。这就如同坐在副驾驶位置与驾驶员位置之别。如果你亲自驾车,而非漫不经心地坐在副驾驶位置上,那么你可能更容易记住去朋友家所需经过的那些弯路。而如果你坐在副驾驶位置上,你将获得同样的视觉信息,但这些信息对你来说意义不大,你也不会专注于其中。同样,旋转木马上被动移动的小猫所获得的信息与处于主动状态的小猫相同,但是对前者而言,这些信息与其自身行动无关。处于主动状态的小猫创造了它的经验,而处于被动状态的小猫则只是经历了这一过程。对于能够自主移动的婴儿和仅在他人协助下才能移动的婴儿来说,情况也是如此。

接下来是动作发展的“使能性”问题,即一件事引发了另一件事,能力之间产生了级联效应。就像坎波斯及其同事在1992年发表的论文结论中所指出的那样:“由一个行为领域的功能发展所带来的新的经验,会对情感、社交、认知以及感觉运动等其他发展领域产生深刻影响。”[8]婴儿学会爬行,然后学会走路,从而改变了一个家庭的社会生态。如果他们愿意,他们可以对世界进行更多探索;他们可以待在养育者身边,并从养育者那里得到有关家中物品被禁止或允许其触碰的各种回应。

这让我们又回到了卡伦·阿道夫和她的研究。从吉米的著作中获得启示之后,她来到亚特兰大的埃默里大学,师从杰姬攻读博士学位。阿道夫回忆说,在她博士生涯初期,有一次她在日托中心看到几个婴儿爬上一个柜子后无法下来。她把自己看到的告诉了杰姬,杰姬回复道:“这很有趣,亲爱的。那么你为什么不跟进一下呢?”从那以后,阿道夫一直在研究婴幼儿对他们能做和不能做的事情有着怎样的认识。

2000年,阿道夫开始着手解决为什么自主位移经验——无论是爬行还是使用婴儿学步车——是避开“视觉悬崖”深处或情绪被其激发的必要先决条件。她的研究为其所在领域带来了变革。阿道夫推测,婴儿在移动自己身体的过程中懂得了让脚(或者手和膝盖)处于坚实地面之上的重要性。爬行是一种学习方式,在爬行的过程中,我们必须“脚踏实地”,而不能凌空移动。

于是,阿道夫利用她的实验室装置对一组9个月大的婴儿进行了测试。在这个实验中,婴儿坐在一个实验平台上,面对着另一个平台,中间有一道空隙。对面的平台上放着一个令婴儿着迷并有可能抓到的玩具。然后,阿道夫让这些婴儿以坐或爬的姿势去够这个玩具。接下来,实验者会移动婴儿对面的平台,并多次调整平台之间的距离,观察婴儿何时会伸出手去拿对面的玩具,何时决定避开危险并留在原地。婴儿运动能力的获得遵循一定的顺序,首先学会坐,接着学会爬,然后学会走。阿道夫发现,一个能够自己坐着的婴儿所学到的关于距离等方面的知识,并不会迁移至学爬阶段。对于一个已经完全能够自己坐着但尚不擅长爬行的婴儿来说,当他们处于坐姿时,他们能够精确地判断出何时能够拿到玩具,何时不能。然而,当他们处于爬行姿势时,他们根本不清楚自己在做什么。接近1/3的婴儿被试似乎完全没有意识到过大的空隙所带来的危险。“事实上,6名婴儿在坐姿时表现出了精确的回避反应,但当处于爬行姿势时,他们无法对自身能力做出判断,”阿道夫写道[9],“处于爬行姿势时,他们尝试着爬向所有距离的空隙,包括90厘米的空隙,这无异于爬向空气。”在后续实验中,这种现象更加明显,也更令人震惊。面对相似的平台间距,那些已经成为爬行高手的孩子不会铤而走险地越过空隙;当这些孩子开始学走路时,他们会蹒跚着径直迈向“悬崖”,就像一些残酷惨烈的歪心狼系列动画中呈现出来的样子。通过对不同运动模式的数百次测试,阿道夫和她的同事一次又一次地发现,婴儿在一种运动模式下所获得的对距离的认识,并不会迁移到另一种运动模式中。从坐到爬再到站立,孩子必须在各种特定的运动形式下重新学习空间的意义。在观察者的眼中,学步的幼儿在房间里扶着家具移动——专业上称之为“巡行”,就像滑冰初学者依靠滑冰场的墙壁来支撑身体一样——看起来几乎就是在走路。然而事实上,二者并不能等同。

当婴儿爬行时,他们并不是在学习诸如20厘米的空间意义等客观事实,而是在学习不同物体、不同情境对他们的身体和行动能力而言意味着什么,就像旋转木马中的小猫一样。用吉布森的术语来说,婴儿是在学习相对于他们自身的空间可供性,因此在进入步行阶段之后必须“重新学习”那些在爬行阶段已经掌握的间隙、悬崖或者坡度。尽管环境可能是相同的,但对孩子来说却是全新的体验。当婴儿学习爬行时,他们就会学到爬行的可供性,即了解在物体表面爬行的机会和代价。刚学会走路时,他们的表现就像那些在黑暗中长大的小猫一样。他们不了解世界能为这种新获得的技能提供什么。童年时期,随着移动方式的更替,儿童也在不断成长发育的过程中学习各种新的可供性。

儿童对世界的理解一直追随着其行动能力的发展脚步。如果你认为青春期是身体发育呈现出惊人变化的阶段,那么就试着向上追溯,来看看学步期的情形:在出生后的头两年里,身高翻倍,体重几乎长了4倍,头围扩大了1/3。这个过程不是随意、渐进的,而是间断性的。婴儿可能会在一个晚上长高1~2厘米,也会在他们醒来和再次入睡之间“缩小”约1厘米。所以实事求是地讲,婴幼儿时期才是人类身体的“猛长期”。

每个婴儿都是科学家,都在不断地进行实验,以解决他们在行走中遇到的问题。阿道夫写道[10] [11],学习走路的过程反映出一些“个性化的、独特的解决方案”。在独立行走的第一个月里,幼儿采用的步态策略是多种多样的:“挪步式行走者”会小心翼翼地迈出微小的步伐,以尽量保持其直立的姿势;“前倾式行走者”身体向前倾倒,这就要求他们的脚步必须不断追赶自己的上半身;“摇摆式行走者”则是先摆动一条腿,然后摆动另一条腿,就像一个在几何课上感到无聊的学生在课桌上移动圆规那样。这些蠢萌的步态将持续约一个月,接下来,孩子们将进入到标志着正常步态的“钟摆式运动”阶段。经过两个月的练习,他们的行走速度会随着步幅的增大而提高。除了能力上的改变,婴儿还必须应对影响他们行为能力的其他因素。以尿布为例:阿道夫发现,就孩子步态模式的成熟程度而言,穿布尿片“相当于失去两个月的行走经验”,而穿着薄的一次性纸尿裤则相当于失去5周的行走经验。当学步儿童穿上尿布和裤子时,比起只穿着尿布,他们迈出的步子会更小。


[1]Neisser, U. (1981). James J. Gibson (1904-1979). American Psychologist,36, 214-215. https://doi.org/10.1037/h0078037

[2]Gibson, J.J. (1979). The ecological approach to visual perception.Boston, MA: Houghton Miflin, pp. 127.

[3]Rodkey, E.N. (2011). The woman behind the visual clif. APA Monitor, 42, 30.

[4]Gibson, E.J., Walk, R.D. (1960). The “visual clif.” Scientific American,202, 64-71. https://doi.org/10.1038/scientificamerican0460-64

[5]该研究成果的第二作者贝内特·伯滕塔尔是丹尼在弗吉尼亚大学的同事,丹尼对婴儿发展及其研究方法等相关内容的了解,大多是从贝内特那里学到的。

[6]Campos, J.T., Bertenthal, B.I., & Kermoian, R. (1992). Early Experience and Emotional Development: The Emergence of Wariness of Heights. Psychological Science, 3, 61-64. https://doi.org/10.1111/j.1467-9280.1992.tb00259.x

[7]Held, R., & Bossom, J. (1961). Neonatal deprivation and adult rearrangement: Complementary techniques for analyzing plastic sensory-motor coordination. Journal of Comparative and Physiological Psychology, 21, 33–37.https://doi.org/10.1037/h0046207 Held, R., & Hein, A. (1963). Movement-produced stimulation in the development of visually guided behavior. Journal of Comparative and Physiological Psychology, 56, 872–876. https://doi.org/10.1037/h0040546

[8]Campos, J.T., Bertenthal, B.I., & Kermoian, R. (1992). Early Experience and Emotional Development: The Emergence of Wariness of Heights. Psychological Science, 3, 61-64, pp. 64. https://doi.org/10.1111/j.1467-9280.1992.tb00259.x

[9]Adolph, K.E. (2000). Specificity of learning: Why infants fall over a veritable clif. Psychological Science, 11, 290-295, pp 292. https://doi.org/10.1111/14679280.00258

[10]Verieiken, B., Adolph, K.E., Denny, M.A., Fadl, Y., Gill, S.V., & Lucero,A.A. (1995). Development of infant crawling: Balance constraints on interlimb coordination. In G. Bardy, R.J. Bootsma and Y. Guiard (Eds.) Studies in Perception and Action III (p 255-258). New Jersey: Lawrence Erlbaum Associates.

[11]Ibid.