参考文献
[1] 中国联通网络技术研究院.中国联通Sub-6 GHz通信技术白皮书[R].2020.
[2] Elayan H, Stefanini C, Shubair R M, et al. End-to-End Noise Model for Intra-Body Terahertz Nanoscale Communication[J]. IEEE Transactions on NanoBioscience, 2018, 17(4): 464-473.
[3] Ju S, Shah S, Javed M A, et al. Scattering Mechanisms and Modeling for Terahertz Wireless Communications[J]. IEEE, 2019.
[4] Rajatheva N, Atzeni I, Bicais S, et al. Scoring the Terabit/s Goal: Broadband Connectivity in 6G[J]. 2020.
[5] Tekbiyik K, Ekti A R, Kurt G K, et al. Terahertz band communication systems: Challenges, novelties and standardization efforts[J]. Physical Communication, 2019, 35(AUG. ): 100700. 1-100700. 18.
[6] Hillger, Philipp, Grzyb, et al. Terahertz Imaging and Sensing Applications With Silicon-Based Technologies[J]. IEEE Transactions on Terahertz Science and Technology, 2019.
[7] Schroter M, Rosenbaum T, Chevalier P, et al. SiGe HBT Technology: Future Trends and TCAD-Based Roadmap[J]. Proceedings of the IEEE, 2017: 1-19.
[8] Urteaga M, Griffth Z, Seo M, et al. InP HBT Technologies for THz Integrated Circuits[J]. Proceedings of the IEEE, 2017, PP(99): 1-17.
[9] University of Oulu.White Paper On RF Enabling 6G-Opportunities And Challenges From Technology To Spectrum[R].2021.
[10] Zhang H, Zhang L, Yu X. Terahertz band: Lighting up next-generation wireless communications[J]. China Communications, 2021, 18(5): 153-174.
[11] 万文坚,黎华,曹俊诚.THz量子级联激光器研究进展[J].中国激光,2020,47(7):0701009.
[12] Vitiello M S, Tredicucci A. Physics and Technology of Terahertz Quantum cascade Lasers[J]. Advances in Physics: X, 2021, 6(1): 1893809.
[13] Yao J. Microwave Photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335.
[14] Griffith Z, Urteaga M, Rowell P. A compact 140-GHz, 150-mW high-gain power amplifier MMIC in 250-nm InP HBT[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(4): 282-284.
[15] Daneshgar S, Buckwalter J F. Compact Series Power Combining Using Subquarter-Wavelength Baluns in Silicon Germanium at 120 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(11): 4844-4859.
[16] Han C, Wu Y, Chen Z, et al. Terahertz Communications (TeraCom): Challenges and Impact on 6G Wireless Systems[J]. 2019.
[17] Bariah L, Mohjazi L, Sofotasios P C, et al. A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks[J]. IEEE Access, 2020, PP(99): 1-1.
[18] Priebe S, Jacob M, Kurner T. Calibrated Broadband Ray Tracing for the Simulation of Wave Propagation in mm and sub-mm Wave Indoor Communication Channels[C]//European Wireless, Ew European Wireless Conference. VDE, 2012.
[19] Elayan H, Amin O, Shihada B, et al. Terahertz Band: The Last Piece of RF Spectrum Puzzle for Communication Systems[J]. IEEE Open Journal of the Communications Society, 2020, 1: 1-32.
[20] Kim S, Zajic A G. A path LoSs model for 300-GHz wireless channels[C]//2014 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2014.
[21] Han C, Bicen A O, Akyildiz I F. Multi-Ray Channel Modeling and Wideband Characterization for Wireless Communications in the Terahertz Band[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2402-2412.
[22] Peng B, Rey S, Kurner T. Channel Characteristics Study for Future Indoor Millimeter and Submillimeter Wireless Communications[C]. 2016 10th European Conference on Antennas and Propagation (EuCAP). IEEE, 2016.
[23] Shuai N, Akyildiz I F. Three-dimensional Dynamic Channel Modeling and Tracking for Terahertz Band Indoor Communications[C]. IEEE International Symposium on Personal. IEEE, 2017.
[24] F Sheikh, Zarifeh N, Kaiser T. Terahertz band: Channel Modelling for Short-range Wireless Communications in the Spectral Windows[J]. IET Microwaves Antennas & Propagation, 2016, 10(13): 1435-1444.
[25] Tsujimura K, Umebayashi K, Kokkoniemi J, et al. A Causal Channel Model for the Terahertz Band[J]. IEEE Transactions on Terahertz Science and Technology, 2017, PP(99): 1-11.
[26] Priebe S, Kurner T. Stochastic Modeling of THz Indoor Radio Channels[J]. IEEE Transactions on Wireless Communications, 2013, 12(9): 4445-4455.
[27] Ekti A R, A Boyacı, Alparslan A, et al. Statistical Modeling of Propagation Channels for Terahertz Band[J]. IEEE, 2017.
[28] Yi C, Chong H. Channel Modeling And analysis for Wireless Networks-on-chip Communications in the Millimeter wave and Terahertz Bands[C]. IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2018.
[29] Zhao H, Wei L, Jarrahi M, et al. Extending Spatial and Temporal Characterization of Indoor Wireless Channels from 350 GHz to 650 GHz[J]. IEEE Transactions on Terahertz Science and Technology, 2019: 1-1.
[30] Khalid N, Akan O B. Wideband THz communication Channel Measurements for 5G Indoor Wireless Networks[C]. IEEE International Conference on Communications. IEEE, 2016.
[31] Piesiewicz R, Islam M N, Koch M, et al. Towards Short-RangeTerahertz Communication Systems: Basic Considerations[C]. International Conference on Applied Electromagnetics & Communications. 2005.
[32] Jacob M, Priebe S, Dickhoff R, et al. Diffraction in mm and Sub-mm Wave Indoor Propagation Channels[J]. IEEE Transactions on Microwave Theory & Techniques, 2012, 60(3): 833-844.
[33] Priebe S, Jastrow C, Jacob M, et al. Channel and Propagation Measurements at 300 GHz[J]. IEEE Transactions on Antennas & Propagation, 2011, 59(5): 1688-1698.
[34] Pometcu L, D'Errico R. Characterization of sub-THz and mmwave Propagation Channel for Indoor Scenarios[C]. 12th European Conference on Antennas and Propagation (EuCAP 2018). IET, 2018.
[35] Abbasi N A, Hariharan A, Nair A M, et al. Channel Measurements and Path LoSs Modeling for Indoor THz Communication[C]. 2020 14th European Conference on Antennas and Propagation (EuCAP). 2020.
[36] Schram V, Moldovan A, Gerstacker W H. Compressive Sensing for Indoor THz Channel Estimation[C]. 2018 52nd Asilomar Conference on Signals, Systems, and Computers. 2018.
[37] Schram V, Bereyhi A, Zaech J N, et al. Approximate Message Passing for Indoor THz Channel Estimation[J]. 2019.
[38] Nie S, Akyildiz I F. Deep Kernel Learning-Based Channel Estimation in Ultra-Massive MIMO Communications at 0. 06-10 THz[C]. 2019 IEEE Globecom Workshops (GC Wkshps). IEEE, 2020.
[39] Gao X, Da I L, Yuan Z, et al. Fast Channel Tracking for Terahertz Beamspace Massive MIMO Systems[J]. IEEE Transactions on Vehicular Technology, 2017, 66(7): 5689-5696.
[40] Sivakumar K. Sparse Channel Estimation for Terahertz System[D]. Northeastern University, 2020.
[41] He H, Wang R, Jin S, et al. Beamspace Channel Estimation in Terahertz Communications: A Model-Driven Unsupervised Learning Approach[J]. 2020.
[42] Jornet, Akyildiz. Information capacity of pulse-based Wireless Nanosensor Networks[C]. /IEEE. IEEE, 2011.
[43] Chong H, Akyildiz I F. Distance-aware multi-carrier (DAMC) modulation in Terahertz Band communication[C]. IEEE International Conference on Communications. IEEE, 2014.
[44] Boulogeorgos A, Papasotiriou E N, Alexiou A.A Distance and Bandwidth Dependent Adaptive Modulation Scheme for THz Communications[J]. 2018: 1-5.
[45] Vavouris A, Dervisi F, V Papanikolaou, et al. An Energy Efficient Modulation Scheme for Body-Centric Terahertz (THz) Nanonetworks[J]. Technologies, 2019, 7(1).
[46] Khalid N, Yilmaz T, Akan O B. Energy-efficient Modulation and Physical Layer Design for Low Terahertz Band Communication Channel in 5G Femtocell Internet of Things[J]. Ad Hoc Networks, 2018, 79(OCT. ): 63-71.
[47] A Süral, Sezer E G, Erturul Y, et al. Terabits-per-Second Throughput for Polar Codes[C]. 2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops). IEEE, 2019.
[48] Han B, Habibi M A, Schotten H D. Optimal Resource Dedication in Grouped Random Access for Massive Machine-Type Communications[C]. 2017 IEEE Conference on Standards for Communications and Networking (CSCN). IEEE, 2017.
[49] Han C, Jornet J M, Akyildiz I.Ultra-Massive MIMO Channel Modeling for Graphene-Enabled Terahertz-Band Communications[C]. 2018: 1-5.
[50] Sarieddeen H, Alouini M S, Al-Naffouri T Y. An Overview of Signal Processing Techniques for Terahertz Communications[J]. arXiv, 2020.
[51] Chen P Y, ArgyropouLoS C, Alu A. Terahertz Antenna Phase Shifters Using Integrally-Gated Graphene Transmission-Lines[J]. IEEE Transactions on Antennas & Propagation, 2013, 61(4): 1528-1537.
[52] Cen L, Li G Y. Energy-Efficient Design of Indoor mmWave and Sub-THz Systems With Antenna Arrays[J]. IEEE Transactions on Wireless Communications, 2016, 15(7): 4660-4672.
[53] Yan L, Han C, Yuan J. A Dynamic Array of Sub-Array Architecture for Hybrid Precoding in the Millimeter Wave and Terahertz Bands[C]. 2019 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2019.
[54] Andrello M, Singh A, Thawdar N, et al. Dynamic Beamforming Algorithms for Ultradirectional Terahertz Communication Systems Based on Graphene-based Plasmonic Nanoantenna Arrays[C]. Asilomar Conference on Signals, Systems, and Computers. 0.
[55] You L, Chen X, Song X, et al. Network massive MIMO transmission over millimeter-wave and terahertz bands: Mobility enhancement and blockage mitigation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(12): 2946-2960.
[56] Chen Z, Han C, Ning B, et al. Intelligent Reflecting Surfaces Assisted Terahertz Communications toward 6G[J]. 2021.
[57] DoveLoS K, Assimonis S D, Ngo H Q, et al. Intelligent Reflecting Surfaces at Terahertz Bands: Channel Modeling and Analysis[J]. arXiv preprint arXiv: 2103. 15239, 2021.
[58] Chen R, Zhou H, Moretti M, et al. Orbital Angular Momentum Waves: Generation, Detection and Emerging Applications[J]. IEEE Communications Surveys & Tutorials, 2019.
[59] Z. Xie, X. Wang, et al. Spatial terahertz modulator[J]. Scientific Reports, 2013, 3(1): 1-4.
[60] Knyazev B A, Choporova Y Y, Mitkov M S, et al. Generation of Terahertz Surface Plasmon Polaritons Using Nondiffractive Bessel Beams with Orbital Angular Momentum[J]. Physical Review Letters, 2015, 115(16): 163901.
[61] Liu C, Wei X, Niu L, et al. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer[J]. Optics Express, 2016.
[62] Helal S, Sarieddeen H, Dahrouj H, et al. Signal Processing and Machine Learning Techniques for Terahertz Sensing: An Overview. 2021.
[63] Singh R, Sicker D. THz Communications-a Boon and/or Bane for Security, Privacy, and National Security[J]. Social Science Electronic Publishing.