参考文献
[1]中国汽车工程学会.节能与新能源汽车技术路线图2.0[M].北京:机械工业出版社,2020.
[2]SHI Y,GE H W,REITZ R D.Computational optimization of internal combustion engines[M].London:Springer,2011.
[3]KOKJOHN S L,HANSON R M,SPLITTER D,et al.Fuel reactivity controlled compression ig-nition(RCCI):a pathway to controlled high-efficiency clean combustion[J].International Journal of Engine Research,2011,12(3):209-226.
[4]VANDERWEGE B A,HAN Z,IYER C O,et al.Development and analysis of a spray-guided DISI combustion system concept[J].SAE Transactions,2003,112(4):2135-2153.
[5]DRAKE M C,HAWORTH D C.Advanced gasoline engine development using optical diagnostics and numerical modeling[J].Proceedings of the Combustion Institute,2007,31(1):99-124.
[6]HAN Z,WEAVER C,WOOLDRIDGE S,et al.Development of a new light stratified-charge DISI combustion system for a family of engines with upfront CFD coupling with thermal and opti-cal engine experiments[J].SAE Transactions,2004,113(3):269-293.
[7]YI J,WOOLDRIDGE S,COULSON G,et al.Development and optimization of the Ford 3.5L V6 EcoBoost combustion system[J].SAE International Journal of Engines,2009,2(1):1388-1407.
[8]NAKATA K,NOGAWA S,TAKAHASHI D,et al.Engine technologies for achieving 45% ther-mal efficiency of SI engine[J].SAE International Journal of Engines,2016,9(1):179-192.
[9]HIROSE I.Our way toward the ideal internal combustion engine for sustainable future[C]//28th Aachen Colloquium Automobile and Engine Technology.Aachen:[s.n.],2019.
[10]NAGASAWA T,OKURA Y,YAMADA R,et al.Thermal efficiency improvement of super-lean burn spark ignition engine by stratified water insulation on piston top surface[J].Interna-tional Journal of Engine Research,2020,22(5):1421-1439.
[11]SPLITTER D,WISSINK M,DelVescovo D,et al.RCCI engine operation towards 60% thermal efficiency[R].SAE Technical Paper,2013-01-0279,2013.
[12]WARDSAUTO.Wards 10 Best Engines[EB/OL].(2017-12-14).[2021-04-01]http:// www.wardsauto.com.
[13]中国汽车发动机网.“中国心”十佳发动机[EB/OL].(2018-11-29).[2021-04-01].http://www.china-engine.net.
[14]蒋德明,黄佐华,吴东垠,等.内燃机替代燃料燃烧学[M].西安:西安交通大学出版社,2007.
[15]HAN Z,WU Z,HUANG Y,et al.Impact of natural gas fuel characteristics on the design and combustion performance of a new light-duty CNG engine[J].International Journal of Auto-motive Technology,2021,22(6).
[16]国家发展改革委.加快推进天然气利用的意见[EB/OL].(2017-07-04).[2021-04-01].http://www.gov.cn/xinwen/201707/04/5207958/files/258c2c4d2100473ba69b 45fb8b4b9b3a.pdf.
[17]REITZ R D,OGAWA H,PAYRI R,et al.IJER editorial:The future of the internal combus-tion engine[J].International Journal of Engine Research,2020,21(1):3-10.
[18]韩志玉,吴振阔,高晓杰.汽车动力变革中的内燃机发展趋势[J].汽车安全与节能学报,2019,10(2):146-160.
[19]WU Z,HAN Z,SHI Y,et al.Combustion optimization for fuel economy improvement of a dedi-cated range-extender engine[J].Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2021,235(9)2525-39.
[20]HOFFMANN G,BEFRUI B,BERNDORFER A,et al.Fuel system pressure increase for en-hanced performance of GDI multi-hole injection systems[J].SAE International Journal of Engines,2014,7(1):519-527.
[21]XU Z,YI J,WOOLDRIDGE S,et al.Modeling the cold start of the Ford 3.5L V6 EcoBoost engine[J].SAE International Journal of Engines,2009,2(1):1367-1387.
[22]XU M,HUNG D,YANG J,et al.Flash-boiling spray behavior and combustion in a direct in-jection gasoline engine[C]// Australian Combustion Symposium.Melbourne:[s.n.],2015.
[23]DEC J E.Advanced compression-ignition combustion for high efficiency and ultra-low NOxand soot[M]//CROLLAD,FOSTER D E,KOBAYASHI T,et al.Encyclopedia of Automo-tive Engineering.Chichester:John Wiley & Sons,2014:1-40.
[24]REITZ R D.Directions in internal combustion engine research[J].Combustion and Flame,2013,160(1):1-8.
[25]苏万华,赵华,王建昕,等.均质压燃低温燃烧发动机理论与技术[M].北京:科学出版社,2010.
[26]PAYKANI A,GARCIA A,SHAHBAKHTI M,et al.Reactivity controlled compression ignition engine:Pathways towards commercial viability[J].Applied Energy,2021,282:116174.
[27]REITZ R D,DURAISAMY G.Review of high efficiency and clean reactivity controlled com-pression ignition(RCCI)combustion in internal combustion engines[J].Progress in Energy and Combustion Science,2015,46:12-71.
[28]LU X,HAN D,HUANG Z.Fuel design and management for the control of advanced compres-sion-ignition combustion modes[J].Progress in Energy and Combustion Science,2011,37(6):741-783.
[29]FOUTS L,FIORONI G M,CHRISTENSEN E,et al.Properties of co-optima core research gasolines[R].National Renewable Energy Laboratory,NREL/TP-5400-71341,2018.
[30]SZYBIST J P,BUSCH S,MCCORMICK R L,et al.What fuel properties enable higher thermal efficiency in spark-ignited engines?[J].Progress in Energy and Combustion Science,2021,82:100876.
[31]HAN Z,REITZ R D.Seeing reduced diesel emissions[J].Mechanical Engineering,1998,120(1):62-63.
[32]HERSHEY R L,EBERHARDT J E,HOTTEL H C.Thermodynamic properties of the working fluid in internal-combustion engines[J].SAE Transactions,1936,31:409-424.
[33]MATTAVI J N,AMANN C A.Combustion modeling in reciprocating engines[M].New York:Plenum Press,1980.
[34]KRIEGER R,BORMAN G.The computation of apparent heat release for internal combustion engines[J].ASME Paper,1966:66-WA/DGP-4.
[35]HEYWOOD J B,HIGGINS J M,WATTS P A,et al.Development and use of a cycle simula-tion to predict SI engine efficiency and NOxemissions[R].SAE Technical Paper,790291,1979.
[36]BLUMBERG P N,LAVOIE G A,TABACZYNSKI R J.Phenomenological models for reciproca-ting internal combustion engines[J].Progress in Energy and Combustion Science,1979,5(2):123-167.
[37]DAVIS G C,TABACZYNSKI R J.The effect of inlet velocity distribution and magnitude on In-cylinder turbulence intensity and burn rate—model versus experiment[J].Journal of En-gineering for Gas Turbines and Power,1988,110(3):509-514.
[38]CATON J A.An introduction to thermodynamic cycle simulations for internal combustion en-gines[M].Chichester:John Wiley & Sons,2016.
[39]EL TAHRY S H.K-epsilon equation for compressible reciprocating engine flows[J].Journal of Energy,1983,7:345-353.
[40]AMSDEN A A,RAMSHAW J D,O'ROURKE P J,et al.KIVA:A computer program for two-and three-dimensional fluid flows with chemical reactions and fuel sprays[R].Los Alamos,NM,USA:Los Alamos National Laboratory,LA-10245-MS,1985.
[41]DUKOWICZ J K.A particle-fluid numerical model for liquid sprays[J].Journal of Computa-tional Physics,1980,35(2):229-253.
[42]REITZ R D.Modeling atomization processes in high-pressure vaporizing sprays[J].Atomis-ation Spray technology,1987,3(4):309-337.
[43]O'ROURKE P J.Collective drop effects on vaporizing liquid sprays[D].Princeton:Princeton University,1981.
[44]AMSDEN D C,AMSDEN A A.The KIVA story:A paradigm of technology transfer[J].IEEE Transactions on Professional Communication,1993,36(4):190-195.
[45]AMSDEN A A,O'ROURKE P J,BUTLER T D.KIVA-II:A computer program for chemi-
cally reactive flows with sprays[R].Los Alamos,NM,USA:Los Alamos National Laborato-ry,LA-11560-MS,1989.
[46]AMSDEN A A.KIVA-3:A KIVA program with block-structured mesh for complex geome-tries[R].Los Alamos,NM,USA:Los Alamos National Laboratory,LA-12503-MS,1993.
[47]HESSEL R P.Numerical simulation of valved intake port and in-cylinder flows using KIVA3[D].Madison:University of Wisconsin-Madison,1993.
[48]HAN Z.Numerical study of air-fuel mixing in direct-injection spark-ignition and diesel en-gines[D].Madison:University of Wisconsin-Madison,1996.
[49]AMSDEN A A.KIVA-3V:A block-structured KIVA program for engines with vertical or canted valves[R].Los Alamos,NM,USA:Los Alamos National Laboratory,LA-13313-MS,1997.
[50]AMSDEN A A.KIVA-3V,release 2:Improvements to KIVA-3V[R].Los Alamos,NM,USA:Los Alamos National Laboratory,LA-13608-MS,1999.
[51]REITZ R D,RUTLAND C J.Development and testing of diesel engine CFD models[J].Pro-gress in Energy and Combustion Science,1995,21(2):173-196.
[52]RUTLAND C J.Large-eddy simulations for internal combustion engines-a review[J].In-ternational Journal of Engine Research,2011,12(5):421-451.
[53]YI J,HAN Z,YANG J,et al.Modeling of the interaction of intake flow and fuel spray in DISI engines[R].SAE Technical Paper,2000-01-0656,2000.
[54]YI J,HAN Z,TRIGUI N.Fuel-air mixing homogeneity and performance improvements of a stratified-charge DISI combustion system[J].SAE Transactions,2002,111(4):965-975.
[55]HAN Z,REITZ R D.Turbulence modeling of internal combustion engines using RNG k-εmodels[J].Combustion Science and Technology,1995,106(4-6):267-295.
[56]HAN Z,REITZ R D.A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling[J].International Journal of Heat and Mass Transfer,1997,40(3):613-625.
[57]HAN Z,XU Z,TRIGUI N.Spray/wall interaction models for multidimensional engine simula-tion[J].International Journal of Engine Research,2000,1(1):127-146.
[58]HAN Z,XU Z,WOOLDRIDGE S T,et al.Modeling of DISI engine sprays with comparison to experimental in-cylinder spray images[J].SAE Transactions,2001,110(3):2376-2386.
[59]ZENG Y,HAN Z.Implementation of multicomponent droplet and film vaporization models into the KIVA-3V code[R].Ford Technical Report,SRR-2001-0165,2001.
[60]HILDITCH J,HAN Z,CHEA T.Unburned hydrocarbon emissions from stratified charge direct injection engines[R].SAE Technical Paper,2003-01-3099,2003.
[61]HAN Z,XU Z.Wall film dynamics modeling for impinging sprays in engines[R].SAE Tech-nical Paper,2004-01-0099,2004.
[62]IYER C O,HAN Z,YI J.CFD modeling of a vortex induced stratification combustion(VISC)system[R].SAE Technical Paper,2004-01-0550,2004.
[63]HAN Z,YI J,HILDITCH,J,et al.Lecture notes at the MESIM technology transfer workshop[Z].Dearborn,MI,USA,2003.