中国新材料研究前沿报告2020
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

参考文献

[1] Weng Hongming. Topological phase and topological phase transition:A brief introduction to topological states of matter in solids(拓扑相和拓扑相变:浅谈固体中的拓扑物态). Chin. Sci. Bull.(科学通报),2016,61:3907-3916.

[2] Kosterlitz J M,Thouless D J. Long range order and metastability in two dimensional solids and superfluids.(Application of dislocation theory). J. Phys. C:Solid State Phys.,1973,5(11):124-126.

[3] Kosterlitz J M,Thouless D J. Ordering,metastability and phase transitions in two-dimensional systems. J. Phys. C:Solid State Phys.,1973,6(7):1181-1203 .

[4] Berezinskii V L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems,Sov. Phys. JETP,1971,32(3):493-500.

[5] Berezinskii V L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group II. Quantum systems. Sov. Phys. JETP,1971,34(3):610-616.

[6] Klitzing K V,Dorda G,Pepper M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Phys. Rev. Lett.,1980,45(6):494-497.

[7] Thouless D J,Kohmoto M,Nightingale M P,et al. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett.,1982,49:405.

[8] Niu Q,Thouless D J,Wu Y S. Quantized Hall conductance as a topological invariant. Phys. Rev. B,1985,31,3372.

[9] Haldane F D M. Model for a Quantum Hall Effect without Landau Levels:Condensed-Matter Realization of the “Parity Anomaly. Phys. Rev. Lett.,1988,61:2015.

[10] Berry M V. Quantal Phase Factors Accompanying Adiabatic Changes. Pro. R. Soc. Lond.,1984,A 392(1802):45-57.

[11] Hasan M Z,Kane C L. Colloquium:Topological Insulators,Rev. Mod. Phys.,2010,82,3045.

[12] Qi X L,Zhang S C. Topological Insulators and Superconductors. Rev. Mod. Phys.,2011,83:1057.

[13] Weng Hongming,Yu Rui,Hu Xiao. Quantum anomalous Hall effect and related topological electronic states,Advances in Physics,2015,64(3):227-282.

[14] Kane C L,Mele E J. Z2 Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett.,2005,95:146802.

[15] Kane C L,Mele E J. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett.,2005,95:226801.

[16] Bernevig B A,Zhang S C,Quantum Spin Hall Effect.Phys. Rev. Lett.,2006,96:106802.

[17] Bernevig B A,Hughes T L,Zhang S C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science,2006,314(5806):1757.

[18] König M,Wiedmann S,Brüne C,et al. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science,2007,318(5851):766.

[19] Fu L,Kane C,Mele E. Topological Insulators in Three Dimensions. Phys. Rev. Lett.,2007,98(10):106803.

[20] Moore J E,Balents L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B:Condens. Matter,2007,75:121306.

[21] Roy R. Topological phases and the quantum spin Hall effect in three dimensions. Phys. Rev. B:Condens. Matter,2009,79(19):195322.

[22] Hsieh D,Qian D,Wray L,et al. A topological Dirac insulator in a quantum spin Hall phase. Nature,2008,452:970.

[23] Zhang H,Liu C X,Qi X L,et al. Topological insulators in Bi2Se3,Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys.,2009,5(6):438.

[24] Xia Y,Qian D,Hsieh D,et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface,Nat. Phys.,2009,5:398.

[25] Fang Z,Nagaosa N,Takahashi K S. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science,2003,302:92-95.

[26] Liu C X,Qi X L,Dai X,et al. Quantum anomalous Hall effect in Hg1-yMnyTe quantum wells. Phys. Rev. Lett.,2008,101:146802.

[27] Yu R,Zhang W,Zhang H J,et al. Quantized Anomalous Hall Effect in Magnetic Topological Insulators. Science,2010,329(5987):61-64.

[28] Chang C Z,Zhang J S,Feng X,et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science,2013,340(6129):167-170.

[29] Seongshik Oh. The Complete Quantum Hall Trio,Science,2013,340.

[30] Chen X,Gu Z C,Liu Z X,et al. Symmetry protected topological orders and the group cohomology of their symmetry group. Phys. Rev.,2013,B 87:155114.

[31] Fu L. Topological Crystalline Insulators. Phys. Rev. Lett.,2011,106,106802.

[32] Hsieh T H,Lin H,Liu Junwei,et al . Topological crystalline insulators in the SnTe material class. Nature Communications,2013,3:982.

[33] Wang Zhijun,Alexandradinata A,Cava R J,et al. Hourglass fermions. Nature,2016,532:189-194.

[34] Ma J Z,Yi C J,Lv B Q,et al. Experimental Discovery of the First Nonsymmorphic Topological Insulator KHgSb. Science Advances,2017,3:e1602415.

[35] Zhang Tan,Cui Zhihai,Wang Zhijun,et al. BaHgSn:A Dirac semimetal with surface hourglass fermions,Phys. Rev.,2020,B 101:115145.

[36] Lu L,Joannopoulos J D,Soljacic M. Topological Photonics. Nature Photonics,2014,8:821.

[37] Prodan E,Prodan C. Topological Phonon Modes and Their Role in Dynamic Instability of Microtubules. Phys. Rev. Lett.,2009,103:248101.

[38] Fang Chen,Fu Liang. New classes of topological crystalline insulators having surface rotation anomaly. Science Advances,2019,5:eaat2374.

[39] Zhang Tan,Yue Changming,Zhang Tiantian,et al. Topological crystalline insulators with C2 rotation anomaly,Phys. Rev. Research,2019,1:012001.

[40] Qian Y T,Tan Z Y,Zhang T,et al. Layer construction of topological crystalline insulator LaSbTe. Sci. China-Phys. Mech. Astron.,2020,63:107001.

[41] Weng H,Dai X,Fang Z. Topological semimetals predicted from first-principles calculations. J. Phys.:Condens. Matter,2016,28:303001.

[42] Herring Conyers. Effect of Time-Reversal Symmetry on Energy Bands of Crystals. Phys. Rev.,1937,52:361.

[43] Michel L,Zak J. Connectivity of energy bands in crystals. Phys. Rev.,1999,B 59:5998.

[44] Zak J. Topologically unavoidable points and lines of crossings in the band structure of solids. J. Phys. A:Math. Gen.,2002,35:6509.

[45] Wan X,Turner A M,Vishwanath A,et al. Topological semimetal and Fermi-arc Surface States in the Electronic Structure of Pyrochlore Iridates. Phys. Rev.,2011,B 83:205101.

[46] Xu G,Weng Hongming,Wang Z,et al. Chern Semimetal and Quantized Anomalous Hall Effect in HgCr2Se4. Phys. Rev. Lett.,2011,107:186806.

[47] Young S M,Zaheer S,Teo J C Y,et al. Dirac Semimetal in Three Dimensions. Phys. Rev. Lett.,2012,108:140405.

[48] Wang Z,Sun Y,Chen X Q,et al. Dirac Semimetal and Topological Phase Transitions in A3Bi(A=Na,K,Rb)Phys. Rev.,2012,B 85:195320.

[49] Liu Z K,Zhou B,Zhang Y,et al. Discovery of a Three-Dimensional Topological Dirac Semimetal,Na3Bi. Science,2014,343:864.

[50] Eugenie Reich. Wonders of flat physics now seen in 3D,Nature doi:10.1038/nature.2014.14538.

[51] Yang B J,Nagaosa Naoto. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nature Communications,2014,5:4898.

[52] Wang Z,Weng Hongming,Wu Q,et al. Three Dimensional Dirac Semimetal and Quantum Transport in Cd3As2. Phys. Rev.,2013,B 88:125427.

[53] Liu Z K,Jiang J,Zhou B,et al. A Stable Three-Dimensional Topological Dirac Semimetal Cd3As2. Nat. Mater.,2014,13:677.

[54] Weng Hongming,Fang Chen,Fang Zhong,et al. Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides. Phys. Rev.,2015,X 5:011029.

[55] Lv B Q,Weng Hongming,Fu B B,et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev.,2015,X 5:031013.

[56] Huang S M,Xu S Y,Belopolski I,et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nature Communications,2014,6:7373.

[57] Xu S Y,Belopolski I,Alidoust N,et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science,2015,349:613.

[58] Lv B Q,Xu N,Weng Hongming,et al. Observation of Weyl nodes in TaAs. Nature Physics,2015,11:724-727.

[59] Huang X,Zhao L,Long Y,et al. Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs. Phys. Rev.,2015,X 5:031023.

[60] Wang Qi,Xu Yuanfeng,Lou Rui,et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nature Communications,2018,9:3681.

[61] Weng Hongming. Magnetic Weyl semimetal finally confirmed. Sci. China Phys. Mech. Astron.,2019,62:127031.

[62] Liu Enke,Sun Yan,Kumar Nitesh,et al. Goennenwein & Claudia Felser,Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nature Physics,2018,14:1125.

[63] Burkov A A,Hook M D,Balents L. Topological nodal semimetals. Phys. Rev.,2011,B 84:235126.

[64] Weng Hongming,Liang Y,Xu Q,et al. Topological node-line semimetal in three-dimensional graphene networks. Phys. Rev.,2015,B 92:045108.

[65] Fang C,Weng H,Dai X,et al. Topological nodal line Semimetal. Chin. Phys.,2016,B 25:117106.

[66] Li R,Ma H,Cheng X,et al. Dirac Node Lines in Pure Alkali Earth Metals. Phys. Rev. Lett.,2016,117:096401.

[67] Bradlyn Barry,Cano Jennifer,Wang Zhijun,et al. Unconventional quasiparticles in conventional crystals,Science,2016,353:558.

[68] Weng Hongming,Fang Chen,Fang Zhong,et al. Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride. Phys. Rev.,2016,B 93:241202(R).

[69] Weng Hongming,Fang Chen,Fang Zhong,et al. Coexistence of Weyl fermion and massless triply degenerate nodal points. Phys. Rev.,2016,B 94:165201.

[70] Zhu Ziming,Winkler G W,Wu Quansheng,et al. Triple Point Topological Metals. Phys. Rev.,2016,X 6:031003.

[71] Lv B Q,Feng Z L,Xu Q N,et al. Observation of three-component fermions in the topological semimetal molybdenum phosphide. Nature,2017,546:627.

[72] Zhang Tiantian,Song Zhida,Alexandradinata A,et al. Double-Weyl Phonons in Transition-Metal Monosilicides. Phys. Rev. Lett.,2018,120:016401.

[73] Tang Peizhe,Zhou Quan,Zhang Shousheng. Multiple Types of Topological Fermions in Transition Metal Silicides. Phys. Rev. Lett.,2018,119:206402.

[74] Chang Guoqing,Xu Suyang,Wieder B J,et al. Unconventional Chiral Fermions and Large Topological Fermi Arcs in RhSi. Phys. Rev. Lett.,2017,119:206401.

[75] Rao Zhicheng,Li Hang,Zhang Tiantian,et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi,Nature,2019,567:496.

[76] Li Hang,Xu Sheng,Rao Zhicheng. et al. Chiral fermion reversal in chiral crystals,Nat. Commun.,2019,10:5505.

[77] Yuan Qianqian,Zhou Liqin,Rao Zhicheng,et al. Quasiparticle interference evidence of the topological Fermi arc states in chiral fermionic semimetal CoSi,Science Advances,2019,5:eaaw9485.

[78] Dzero M,Sun K,Galitski V,et al. Topological Kondo Insulators. Phys. Rev. Lett.,2010,104:106408.

[79] Lu F,Zhao J Z,Weng Hongming,et al. Correlated Topological Insulators with Mixed Valence. Phys. Rev. Lett.,2013,110:096401.

[80] Weng Hongming,Zhao J Z,Wang Z J,et al. Topological Crystalline Kondo Insulator in Mixed Valence Ytterbium Borides. Phys. Rev. Lett.,2014,112:016403.

[81] Xu Yuanfeng,Yue Changming,Weng Hongming,et al. Heavy Weyl Fermion State in CeRu4Sn6. Phys. Rev.,2017,X 7:011027.

[82] Zhang Tiantian,Jiang Yi,Song Zhida,et al. Catalogue of topological electronic materials. Nature,2019,566:475.

[83] Vergniory M G,Elcoro L,Felser Claudia,et al. A complete catalogue of high-quality topological materials. Nature,2019,566:480.

[84] Tang Feng,Po Hoi Chun,Vishwanath Ashvin,et al. Comprehensive search for topological materials using symmetry indicators. Nature,2019,566:486.

[85] Zunger Alex. Beware of plausible predictions of fantasy materials. Nature,2019,566:447.

[86] Knez I,Du R R,Sullivan G. Evidence for Helical Edge Modes in Inverted InAs/GaSb Quantum Wells,Phys. Rev. Lett.,2011,107,136603.

[87] Liu C C,Feng W,Yao Y. Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium,Phys. Rev. Lett.,2011,107:076802.

[88] Xu Y,Yan B,Zhang H J,et al. Large-Gap Quantum Spin Hall Insulators in Tin Films. Phys. Rev. Lett.,2013,111:136804.

[89] Zhang Dong,Lou Wenkai,Miao M S,et al. Interface-Induced Topological Insulator Transition in GaAs/Ge/GaAs Quantum Wells,Phys. Rev. Lett.,2013,111:156402.

[90] Weng Hongming,Dai X,Fang Z. Transition-Metal Pentatelluride ZrTe5 and HfTe5:a Paradigm for Large-gap Quantum Spin Hall Insulators. Phys. Rev.,2014,X 4:011002.

[91] Zhou J J,Feng W,Liu C C,et al. Large-gap quantum spin Hall insulator in single layer bismuth monobromide Bi4Br4. Nano Lett.,2014,14:4767.

[92] Weng H,Ranjbar A,Liang Y,et al. Large-gap two-dimensional topological insulator in oxygen functionalized MXene,Phys. Rev.,2015,B 92:075436.

[93] Xu Qiunan,Song Zhida,Nie Simin,et al. Two-dimensional oxide topological insulator with iron-pnictide superconductor LiFeAs structure,Phys. Rev.,2015,B 92:205310.

[94] Yu Rui,Qi Xiaoliang,Bernevig Andrei,et al. Equivalent expression of Z2 topological invariant for band insulators using the non-Abelian Berry connection. Phys. Rev.,2011,B 84:075119.

[95] Wang Zhong,Zhang Shoucheng. Simplified Topological Invariants for Interacting Insulators,Phys. Rev.,2012,X 2:031008.

[96] Lee Dong Sun,Kim Tae-Hoon,Park Cheol-Hee,et al. Crystal structure,properties and nanostructuring of a new layered chalcogenide semiconductor,Bi2MnTe4. Cryst. Eng. Comm,2013,15:5532.

[97] Otrokov M M,Menshchikova T V,Vergniory M G,et al. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Mater.,2017,4:025082.

[98] Gong Yan,Guo Jingwen,Li Jiaheng,et al. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett.,2019,36:076801.

[99] Zhang Dongqin,Shi Minji,Zhu Tongshuai,et al. Topo-logical axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett.,2019,122:206401.

[100] Li Jiaheng,Li Yang,Du Shiqiao,et al. Intrinsic magnetic topological insulators in van der waals layered MnBi2Te4-family materials. Sci. Adv.,2019,5:eaaw5685.

[101] Otrokov M M,Klimovskikh I I,Bentmann H,et al. Prediction and observation of an antiferromagnetic topological insulator. Nature,2019,576:416.

[102] Shi Mengzhu,Guo Zhongxun,Xu Zihan,et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science,2020,367:895.

[103] Liu Chang,Wang Yongchao,Li Hao,et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater.,2020,19:522.

[104] Otrokov M M,Rusinov I P,Blanco-Rey M,et al. Unique thickness-dependent properties of the van der waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett.,2019,122:107202.

[105] Ge Jun,Liu Yanzhao,Li Jiaheng,et al. High-Chern-Number and High-Temperature Quantum Hall Effect without Landau Levels. Nat. Sci. Rev.,2020:nwaa089.

[106] Yu R,Weng Hongming,Fang Zhong,et al. Topological Node-Line Semimetal and Dirac Semimetal State in Antiperovskite Cu3PdN. Phys. Rev. Lett.,2015,115:036807.

[107] Xu Qiunan,Yu Rui,Fang Zhong,et al. Topological nodal line semimetals in the CaP3 family of materials,Phys. Rev.,2017,B 95:045136.

作者简介

方忠,中国科学院院士,中国科学院物理研究所研究员,中国物理学会副理事长、秘书长,美国物理学会会士。主要从事于计算凝聚态物理研究,在自旋-轨道物理和拓扑物态研究方面做出了重要贡献。曾获国家杰出青年基金、国际理论物理中心ICTP奖、全球华人物理学会“亚洲成就奖”、中科院杰出科技成就奖、求是杰出科技成就集体奖、周培源物理奖、周光召基础科学奖、国家自然科学一等奖等。

翁红明,中国科学院物理研究所研究员。曾获国家杰出青年基金,科技部“科技创新领军人才计划”和中组部“万人计划”资助,获日本仁科纪念财团仁科亚洲奖,中科院青年科学家奖,中科院杰出科技成就集体奖等。主要从事计算凝聚态物理研究,包括发展第一性原理计算方法,探索稀磁半导体等关联电子体系磁性机理,预测拓扑电子材料并计算拓扑物性等。