4.5 推动我国人工肺中空纤维交换膜材料产业发展的对策和建议
目前在国内注册医疗器械生产人工肺的国际企业有5家,进口企业有25家。ECMO的应用从2003年的“非典”之后急剧增加,使用技术从三甲医院扩散至地方医院。现在急需一种性能更好、价格更便宜的膜肺来降低医疗价格,提升治愈率,而不是等待国外技术的扩散。目前国内外多采用热致相分离法生产聚烯烃中空纤维膜作为膜肺,由于其原理限制,导致生产速度慢,溶剂部分原料回收困难,包含固液加热共混后续萃取等工艺,较为复杂。针对现在技术壁垒和专利的围墙,我们可以在目前得到的新原料中寻找功能更为优越的新材料,作为替代,进行有针对性的研发;针对目前成型工艺以及原理存在的缺陷,进行工艺创新,以加工方式的革新,创造新的体系,越过国外壁垒的同时,促进国内的发展,以点带面,促进一系列产业的发展。
ECMO在重大疫情中能够发挥关键作用,是国家公共卫生安全中的重要一环,对此我们有关于产业和人才两方面的建议:
① 应加紧研制国产ECMO膜,通过设立重大科研项目、组织科研攻关团队等,走产业联盟途径,产业链各环节厂家联合进行开发,加速国产ECMO膜落地。同时,我国应加强对新材料、精细化工和元器件等关键核心技术的支持力度,从“源头”上促进医疗装备产业发展。通过精准扶持,加速ECMO膜纺丝设备国产替代进程。在ECMO膜设备国产替代过程中,我国应对掌握关键核心技术的企业从科研、生产到应用等环节进行精准扶持,政策与金融支持推进ECMO膜国产化进程,助力ECMO国产设备加速落地。
② 一个产业要想不断地向前发展,就需要不断地创新。人工膜肺及其组件不断地发展创新表现在“表面涂层”“血液滤过”和“小型化”方面,而人才的培养显得尤为重要。在工程应用型的专业人才培养的主要目的是为了更好地满足当前行业发展的需求。因此在培训中,一定要以基层、生产线为原则,在提升通识教育的前提下,增强学生综合素质的培养,动手能力以及实践能力的培养。除了完善校内工程实训条件之外,还要增强校企学研基地的建设,以此来弥补校内实训的不足,从而使学生学习以及实践得到更好的完善。
相信在众多医疗机构和高校等研究机构的协同合作下,ECMO人工肺中空纤维交换膜核心材料必将会完成自主研发,国产自主研发ECMO设备也将在不久的将来诞生,具有更高的安全性和有效性,并能更好地为我国及其他国家有需要的病患者服务。
参考文献
[1] 宫美慧, 蒋树林, 李咏梅, 等.人工膜肺氧合器临床应用研究及发展趋势[J].现代生物医学进展, 2015, 15(21): 4186-4190.
[2] 黑飞龙, 龙村, 于坤.体外膜肺氧合并发症研究[J].中国体外循环杂志, 2005(04): 243-245.
[3] Madhani S P, May A G, Frankowski B J, et al. Blood Recirculation Enhances Oxygenation Efficiency of Artificial Lungs[J]. Asaio Journal, 2020, 66(5): 565-570.
[4] Raffaeli G, Pokorna P, Ailegaert K, et al. Drug Disposition and Pharmacotherapy in Neonatal ECMO: From Fragmented Data to Integrated Knowledge[J]. Frontiers in Pediatrics, 2019, 7.
[5] 潘红, 黄琴红, 蔡英华, 等.13例体外膜肺氧合治疗危重患者院内转运的护理[J].中华护理杂志, 2017, 52(05): 561-563.
[6] Daniel J M, Bernard P A, Skinner S C, et al. Hollow Fiber Oxygenator Composition Has a Significant Impact on Failure Rates in Neonates on Extracorporeal Membrane Oxygenation: A Retrospective Analysis[J]. Journal of Pediatric Intensive Care, 2018, 7 (1): 7-13.
[7] 陈虹, 吴前胜, 陈丽, 等. ECMO联合CRRT救治危重型新型冠状病毒肺炎患者3例的护理[J].中西医结合护理(中英文), 2020, 6(04): 182-186.
[8] 梅早仙, 孙昕, 吴琦.人工肺的现状和发展[J].生物医学工程学杂志, 2010, 27(06): 1410-1414.
[9] 刘东, 王盛宇, 孙凌波, 等. ECMO的临床应用[J].北京生物医学工程, 2008(03): 305-308+327.
[10] Sauer C M, Yuh D D , Bonde P. Extracorporeal Membrane Oxygenation Use Has Increased by 433% in Adults in the United States from 2006 to 2011[J]. ASAIO Journal, 2015: 31-36.
[11] Ann Arbor, MI. ELSO Guidelines for ECMO Centers[M]. Extracorporeal Life Support Organization (ELSO), 2010.
[12] 丁海涛.习近平在北京考察新冠肺炎防控科研攻关工作[J].中国发展观察, 2020(Z3).
[13] Stamatialis D F, Papenburg B J, Girones M, et al. Medical Applications of Membranes: Drug Delivery, Artificial Organs and Tissue Engineering[J]. Journal of Membrane Science, 2008, 308 (1-2): 1-34.
[14] Iwahashi H, Yuri K, Nosé Y. Development of the Oxygenator: Past, Present, and Future[J]. Journal of Artificial Organs, 2004, 7(3): 111-120.
[15] Robb W L. Thin Silicone Membranes--Their Permeation Properties and Some Applications[J]. Annals of the New York Academy of Sciences, 1968, 146 (1): 119-137.
[16] Yasuda H, Lamaze C E. Transfer of Gas to Dissolved Oxygen in Water via Porous and Nonporous Polymer Membranes[J]. Journal of Applied Polymer Science, 1972, 16 (3): 595-601.
[17] Kolobow T, Spragg R G, Pierce J E, et al.Extended Term (to 16 Days) Partial Extracorporeal Blood Gas Exchange with the Spiral Membrane Lung in Unanesthetized Lambs[J]. Transactions-American Society for Artificial Internal Organs, 1971, 17: 350-354.
[18] Abada E N, Feinberg B J, Roy S. Evaluation of Silicon Membranes for Extracorporeal Membrane Oxygenation (ECMO)[J]. Biomedical Microdevices, 2018, 20 (4).
[19] Motomura T, Maeda T, Kawahito S, et al. Extracorporeal Membrane Oxygenator Compatible with Centrifugal Blood Pumps[J]. Artificial Organs, 2002, 26(11): 952-958.
[20] Schumer E, Hoffler K, Kuehn C, et al. In-vitro Evaluation of Limitations and Possibilities for the Future Use of Intracorporeal Gas Exchangers Placed in the Upper Lobe Position[J]. Journal of Artificial Organs, 2018, 21 (1): 68-75.
[21] Yeager T, Roy S. Evolution of Gas Permeable Membranes for Extracorporeal Membrane Oxygenation[J]. Artificial Organs, 2017, 41 (8): 700-709.
[22] Lin F C, Wang D M, Lai J Y. Asymmetric TPX Membranes with High Gas Flux[J]. Journal of Membrane Science, 1996, 110 (1): 25-36.
[23] Müller M O, Kessler E, Hornscheidt R R, et al. Integrally Asymmetrical Polyolefin Membrane for Gas Exchange[P]. US6409921B1, 2002.
[24] Madhani S P, Frankowski B J, Federspiel W J. Fiber Bundle Design for an Integrated Wearable Artificial Lung[J]. Asaio Journal, 2017, 63 (5): 631-636.
[25] Wickramasinghe S R, Garcia J D, Han B B. Mass and Momentum Transfer in Hollow Fibre Blood Oxygenators[J]. Journal of Membrane Science, 2002, 208 (1-2): 247-256.
[26] Ahmed T, Semmens M J. Use of Sealed Hollow Fibers for Bubbleless Membrane Aeration-Experimental Studies [J]. Journal of Membrane Science, 1992, 69 (1-2): 1-10.
[27] Ahmed T, Semmens M J. The Use of Independently Sealed Microporous Hollow Fiber Membranes for Oxygenation of Water-Model Development[J]. Journal of Membrane Science, 1992, 69 (1-2): 11-20.
[28] Moulin P, Rouch J C, Serra C, et al. Mass Transfer Improvement by Secondary Flows: Dean Vortices in Coiled Tubular Membranes[J]. Journal of Membrane Science, 1996, 114 (2): 235-244.
[29] Matsuda N, Sakai K. Blood Flow and Oxygen Transfer Rate of an Outside Blood Flow Membrane Oxygenator[J]. Journal of Membrane Science, 2000, 170 (2): 153-158.
[30] Catapano G, Papenfuss H D, Wodetzki A, et al. Mass and Momentum Transport in Extra-luminal Flow (ELF) Membrane Devices for Blood Oxygenation[J]. Journal of Membrane Science, 2001, 184 (1): 123-135.
[31] Catapano G, Hornscheidt R, Wodetzki A, et al. Turbulent Flow Technique for the Estimation of Oxygen Diffusive Permeability of Membranes for the Oxygenation of Blood and Other Cell Suspensions[J]. Journal of Membrane Science, 2004, 230 (1-2): 131-139.
[32] Gerling K, Olschlager S, Avci-Adali M, et al. A Novel C1-Esterase Inhibitor Oxygenator Coating Prevents FXII Activation in Human Blood[J]. Biomolecules, 2020, 10 (7).
[33] Sreenivasan R, Bassett E K, Hoganson D M, et al. Ultra-thin, Gas Permeable Free-standing and Composite Membranes for Microfluidic Lung Assist Devices[J]. Biomaterials, 2011, 32 (16): 3883-3889.
[34] Hess C, Wiegmann B, Maurer A N, et al. Reduced Thrombocyte Adhesion to Endothelialized Poly 4-Methyl-1-Pentene Gas Exchange Membranes-A First Step Toward Bioartificial Lung Development[J]. Tissue Engineering Part A, 2010, 16 (10): 3043-3053.
[35] Kaar J L, Oh H I, Russell A J, et al. Towards Improved Artificial Lungs Through Biocatalysis[J]. Biomaterials, 2007, 28 (20): 3131-3139.
[36] Kimmel J D, Arazawa D T, Ye S H, et al. Carbonic Anhydrase Immobilized on Hollow Fiber Membranes Using Glutaraldehyde Activated Chitosan for Artificial Lung Applications[J]. Journal of Materials Science-Materials in Medicine, 2013, 24 (11): 2611-2621.
[37] Potkay J A. The Promise of Microfluidic Artificial Lungs[J]. Lab on a Chip, 2014, 14 (21): 4122-4138.
[38] Jani J M, Wessling M, Lammertink R G H. Geometrical Influence on Mixing in Helical Porous Membrane Microcontactors[J]. Journal of Membrane Science, 2011, 378 (1-2): 351-358.
[39] Femmer T, Kuehne A J C, Torres-Rendon J, et al. Print your Membrane: Rapid Prototyping of Complex 3D-PDMS Membranes via a Sacrificial Resist[J]. Journal of Membrane Science, 2015, 478: 12-18.
[40] Hoganson D M, Pryor H I, Bassett E K, et al. Lung Assist Device Technology with Physiologic Blood Flow Developed on a Tissue Engineered Scaffold Platform[J]. Lab on a Chip, 2011, 11 (4): 700-707.
[41] Kniazeva T, Epshteyn A A, Hsiao J C, et al. Performance and Scaling Effects in a Multilayer Microfluidic Extracorporeal Lung Oxygenation Device[J]. Lab on a Chip, 2012, 12 (9): 1686-1695.
[42] Gimbel A A, Flores E, Koo A, et al. Development of a Biomimetic Microfluidic Oxygen Transfer Device[J]. Lab on a Chip, 2016, 16 (17): 3227-3234.
[43] Wu W I, Rochow N, Chan E, et al. Lung Assist Device: Development of Microfluidic Oxygenators for Preterm Infants with Respiratory Failure[J]. Lab on a Chip, 2013, 13 (13): 2641-2650.
[44]何春菊, 孙俊芬, 吴光香, 等.改性PAN中空纤维原丝的研制[J].东华大学学报(自然科学版), 2006(01): 11-14.
[45] 朱思君, 段友容, 梅勇, 等.聚醚砜中空纤维膜的制备[J].合成纤维工业, 2005(03): 22-24.
[46] Wang J, Liu L, Qu Z, et al. Outstanding Antifouling Performance of Poly(vinylidene fluoride) Membranes: Novel Amphiphilic Brushlike Copolymer Blends and One-step Surface Zwitterionization[J]. Journal of Applied Polymer Science, 2019, 136 (24).
[47] Qiu Z, Ji X, He C. Fabrication of a Loose Nanofiltration Candidate from Polyacrylonitrile/Graphene Oxide Hybrid Membrane via Thermally Induced Phase Separation[J]. Journal of Hazardous Materials, 2018, 360: 122-131.
[48] 王庆瑞, 陈雪英, 何春菊.高分子膜材料及人工脏器[J].膜科学与技术, 2003(04): 151-155.
[49] 孙俊芬, 王庆瑞.新型膜式人工脏器的研究进展[J].产业用纺织品, 2001(08): 9-13.
[50] 庞嬿婉, 陶铮, 张辉, 等.交叉流微孔聚丙烯中空纤维膜式氧合器研究[J].复旦学报(自然科学版), 2001(4): 381-386.
[51] Wang Y B, Gong M, Yang S, et al. Hemocompatibility and Film Stability Improvement of Crosslinkable MPC Copolymer Coated Polypropylene Hollow Fiber Membrane[J]. Journal of Membrane Science, 2014, 452: 29-36.
[52] 饶华新.新型中空纤维膜式人工肺的设计与研究[D].广州: 暨南大学, 2008.
[53] 赵肖.中空纤维膜的层层自组装制备及其在膜式氧合器中的应用研究[D].广州: 暨南大学, 2016.
[54] 黄鑫.热致相分离法制备聚4-甲基-1-戊烯中空纤维膜及其表面血液相容性改性[D].南京: 南京大学, 2016.
[55] Huang X, Wang W P, Zheng Z, et al. Surface Monofunctionalized Polymethyl Pentene Hollow Fiber Membranes by Plasma Treatment and Hemocompatibility Modification for Membrane Oxygenators[J]. Applied Surface Science, 2016, 362: 355-363.
[56] 叶非华, 易国斌.可交联磷酰胆碱聚合物改性聚甲基戊烯中空纤维膜[J].复合材料学报, 2021: 38.
[57] 王琴梅, 张涤华, 廖艳红, 等.聚甲基戊烯膜式氧合器表面碳酸酐酶的固定化及性能研究[J].化学通报, 2009, 72(6): 549-553.
[58] 许少波, 王建华.中空纤维膜式氧合器的研究进展[J]. 学科前沿, 2006(10): 4-7.
[59] Aksoy A E, Hasirci V, Hasirci N. Surface Modification of Polyurethanes with Covalent Immobilization of Heparin[C]//Macromolecular Symposia. WILEY-VCH Verlag, 2008, 269(1): 145-153.
[60] Tashiro M, Okamoto T, Sakanashi Y, et al. Experimental Evaluation of the V-point Heparinbonding System Applied to a Densemembrane Artificial Lung during 24hour Extracorporeal Circulation in Beagles[J]. Artificial Organs, 2001, 25(8): 655-663.
[61] 王风婷, 罗峰.膜式氧合器中膜材料的研究进展[J].中国组织工程研究与临床康复, 2008, 12(10): 1927-1930.
[62] Reng M, Philipp A, Kaiser M, et al. Pumpless Extracorporeal Lung Assist and Adult Respiratory Distress Syndrome[J]. The Lancet, 2000, 356(9225): 219-220.
[63] Nishinaka T, Tatsumi E, Taenaka Y, et al. At Least Thirty-four Days of Animal Continuous Perfusion by a Newly Developed Extracorporeal Membrane Oxygenation System without Systemic Anticoagulants[J]. Artificial Organs, 2002, 26(6): 548-551.
朱美芳,教授,中国科学院院士,东华大学材料科学与工程学院院长,纤维材料改性国家重点实验室主任,中国材料研究学会副理事长及纤维材料改性与复合技术分会理事会主任、中国女科技工作者协会第四届理事会副会长、国家重点研发计划“重点基础材料技术提升与产业化”重点专项总体专家组专家、第七届国务院学位委员会材料科学与工程学科评议组成员、2018—2022教育部高等学校材料类专业教学指导委员会副主任委员、中国化学会高分子学科委员会副主任委员。主要从事纤维材料功能化、舒适化和智能化领域的研究,取得了系统性和创造性成果。先后主持国家重点研发计划、国家自然科学基金重点项目等国家及省部级科研任务30余项;发表SCI论文350余篇,出版著作10部(章);获授权中国发明专利180余件、PCT6件;以第一完成人获国家科技进步二等奖、上海市自然科学一等奖、上海市技术发明一等奖等10余项。
何春菊,东华大学材料科学与工程学院教授,博士生导师,教育部新世纪优秀人才、上海市浦江学者,纤维材料改性国家重点实验室固定成员。主要研究方向为中空纤维膜人工脏器、功能膜材料的研制及应用。先后参与国家高技术研究发展计划(863计划)重大计划、科技支撑计划、主持国家自然科学基金面上项目、青年基金项目等国家及省部级科研任务30余项;以第一作者发表SCI论文70余篇,出版著作3部(章);获授权中国发明专利40余件;获香港桑麻基金会桑麻纺织科技一等奖、上海市科技进步二等奖、福建省科技进步二等奖等5项。
孟哲一,东华大学材料科学与工程学院副研究员,主要从事仿生膜材料研究。2016年毕业于北京航空航天大学材料物理与化学专业,获工学博士学位,之后在英国伦敦大学学院化学工程系从事博士后研究,2019年入职东华大学。至今共发表SCI论文13篇,以第一作者身份发表Adv. Mater. 1篇,ACS Appl. Mater. Intefaces 两篇。主持国家自然科学基金青年基金项目一项,参与过国内自然科学基金面上项目两项、973课题两项、英国EPSRC基金项目一项。