智能预测性维护
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

参考文献

[1] 王远航,邓超,胡湘洪,等.基于多故障模式的复杂机械设备预防性维修决策.计算机集成制造系统,2015,21(9):2504-2514.

[2] JARDINE A,LIN D,BANJEVIC D.A review on machinery diagnostics and prognostics implementing condition-based maintenance.Mechanical Systems and Signal Processing,2006,20:1483-1510.

[3] 牛明忠,王保华,王桂亮.设备故障的震动识别方法与实例.北京:冶金工业出版社,1995.

[4] CAI B,ZHAO Y,LIU H,et al.A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems.IEEE Transactions on Power Electronics,2016,32(7):5590-5600.

[5] WEN L,LI X,GAO L,et al.A new convolutional neural network based data-driven fault diagnosis method.IEEE Transactions on Industrial Electronics,2018,65(7):5990-5998.

[6] PANDYA D H,UPADHYAY S H,HARSHA S P.Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN.Expert Systems with Applications,2013,40(10):4137-4145.

[7] 彭喜元,彭宇,刘大同.数据驱动的故障预测.哈尔滨:哈尔滨工业大学出版社,2016.

[8] 张志华.可靠性理论及工程应用.北京:科学出版社,2012.

[9] BERGER J O.Statisal decision theory and bayesion analysis.Berlin:Springerverlag,1985.

[10] 金光.基于退化的可靠性技术——模型、方法及应用.北京:国防工业出版社,2014.

[11] DAVID G S,RICHARD O D,PETER E H.Pattern classification.2nd ed.New Jersey:Wiley Interscience,2017.

[12] WANG L,CHU J,MAO W.An optimum condition-based replacement and spare provisioning policy based on Markov chains.Journal of Quality in Maintenance Engineering,2008,14(4):387-401.

[13] Ye Z S,Xie M.Stochastic modeling and analysis of degradation for highly reliable products.Applied Stochastic Models in Business and Industry.2015,31:16-32.

[14] CHEN N,YE Z S,XIANG Y,et al.Condition-based maintenance using the inverse Gaussian degradation model.European Journal of Operational Research,2015,243(1):190-199.

[15] ELWANY A H,GEBRAEEL N Z,MAILLART L M.Structured replacement policies for components with complex degradation processes and dedicated sensors.Operations Research,2011,59,684-695.

[16] GUO C,WANG W,GUO B,et al.A maintenance optimization model for mission-oriented systems based on wiener degradation.Reliability Engineering&System Safety,2013,111,183-194.

[17] DIEULLE L,BERENGUER C,GRALL A,et al.Sequential condition-based maintenance scheduling for a deteriorating system.European Journal of Operational Research,2003,150,451-461.

[18] GRALL A,BERENGUER C,DIEULLE L.A condition-based maintenance policy for stochastically deteriorating systems.Reliability Engineering&System Safety,2002,76,167-180.

[19] LIAO H,ELSAYED E A,CHAN L Y.Maintenance of continuously monitored degrading systems.European Journal of Operational Research,2006,175,821-835.

[20] WANG X,XU D.An inverse gaussian process model for degradation data.Technometrics,2010,52,188-197.

[21] YE Z S,CHEN L,TANG L,et al.Accelerated degradation test planning using the inverse gaussian process.IEEE Transactions on Reliability,2014,63,750-763.

[22] CHEN N,TSUI K L.Condition monitoring and residual life prediction using degradation signals:Revisited.IIE Transactions,2013,45,939-952 .

[23] LIAO H,TIAN Z A framework for predicting the remaining useful life of a single unit undertime-varying operating conditions.IIET ransactions,2013,45,964-980 .

[24] YE Z S,CHEN N,TSUI K L.A bayesian approach to condition monitoring with imperfect inspections.Quality&Reliability Engineering International,2015,31(3):513-522 .

[25]Azure AI guide for predictive maintenance.https://docs.microsoft.com/en-us/azure/machine-learning/team-datascience-process/cortana-analytics-playbookpredictive-maintenance,2018.

[26] KHALEGHI B,KHAMIS A,KARRAY F O,et al.Multisensor data fusion:a review of the state-of-the-art.Information Fusion,2013,14:28-44.

[27] SINHA A,CHEN H,DANU D G,et al.Estimation and decision fusion:a survey.Neurocomputing,2008,71:2650-2656.