Python Data Analysis(Second Edition)
上QQ阅读APP看书,第一时间看更新

Indexing with a list of locations

Let's apply the ix_() function to shuffle the Lena photo. The following is the code for this example without comments. The finished code for the recipe can be found in ix.py in this book's code bundle:

import scipy.misc 
import matplotlib.pyplot as plt 
import numpy as np 
 
face = scipy.misc.face() 
xmax = face.shape[0] 
ymax = face.shape[1] 
 
def shuffle_indices(size): 
   arr = np.arange(size) 
   np.random.shuffle(arr) 
 
   return arr 
 
xindices = shuffle_indices(xmax) 
np.testing.assert_equal(len(xindices), xmax) 
yindices = shuffle_indices(ymax) 
np.testing.assert_equal(len(yindices), ymax) 
plt.imshow(face[np.ix_(xindices, yindices)]) 
plt.show() 

This function produces a mesh from multiple sequences. We hand in parameters as one-dimensional sequences and the function gives back a tuple of NumPy arrays, for instance, as follows:

In : ix_([0,1], [2,3]) 
Out: 
(array([[0],[1]]), array([[2, 3]])) 

To index the NumPy array with a list of locations, execute the following steps:

  1. Shuffle the array indices.

    Make an array with random index numbers with the shuffle() function of the numpy.random subpackage. The function modifies the array in place:

              def shuffle_indices(size): 
                 arr = np.arange(size) 
                 np.random.shuffle(arr) 
     
              return arr 
    
  2. Plot the shuffled indices, as shown in the following code:
            plt.imshow(face[np.ix_(xindices, yindices)]) 
    

What we obtain is a totally scrambled Lena: