
Using Java to support data science
Java and its associated third-party libraries provide a range of support for the development of data science applications. There are numerous core Java capabilities that can be used, such as the basic string processing methods. The introduction of lambda expressions in Java 8 helps enable more powerful and expressive means of building applications. In many of the examples that follow in subsequent chapters, we will show alternative techniques using lambda expressions.
There is ample support provided for the basic data science tasks. These include multiple ways of acquiring data, libraries for cleaning data, and a wide variety of analysis approaches for tasks such as natural language processing and statistical analysis. There are also myriad of libraries supporting neural network types of analysis.
Java can be a very good choice for data science problems. The language provides both object-oriented and functional support for solving problems. There is a large developer community to draw upon and there exist multiple APIs that support data science tasks. These are but a few reasons as to why Java should be used.
The remainder of this chapter will provide an overview of the data science tasks and Java support demonstrated in the book. Each section is only able to present a brief introduction to the topics and the available support. The subsequent chapter will go into considerably more depth regarding these topics.