Applied Supervised Learning with R
上QQ阅读APP看书,第一时间看更新

Bivariate Analysis

In bivariate analysis, we extend our analysis to study two variables together. In our use case, we have around 20 independent variables. It is indeed possible to study all permutation combinations of the available 20 variables, but we won't go to that extent in this chapter. In our use case, we are more interested in studying all the factors that led to the poor performance of the campaign. Therefore, our primary focus will be to perform bivariate analysis and study the relationship between all the independent variables and our dependent target variable. Again, depending on the type of variable, we will have a different type of visual or analytical technique to analyze the relationship between the two variables. The possible combinations are numeric and numeric, and numeric and categorical. Given that our dependent variable is a categorical variable, we might have to explore the relationship between two independent variables in our list to study the relationship between two numeric variables. Let's get started.