深度学习与目标检测
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

参考资料

[1] A.Krizhevsky,I.Sutskever,G.E.Hinton.ImageNet classification with deep convolutional neural networks.International Conference on Neural Information Processing Systems,2012:1097-1105.

[2] M.D.Zeiler,R.Fergus.Visualizing and Understanding Convolutional Networks.European Conference on Computer Vision (ECCV),2014,818-833.

[3] C.Szegedy,W.Liu,Y.Jia,et al.Going deeper with convolutions.arXiv:1409.4842,2014.

[4] K.Simonyan,A.Zisserman.Very deep convolutional networks for large-scale image recognition.arXiv:1409.1556,2015.

[5] K.He,X.Zhang,S.Ren,J.Sun.Deep Residual Learning for Image Recognition.IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016,770-778.

[6] J.Hu,L.Shen,G.Sun.Squeeze-and-Excitation Networks.arXiv:1709.01507,2017.

[7] R.Girshick,J.Donahue,T.Darrell,et al.Rich feature hierarchies for accurate object detection and semantic segmentation.IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2014.

[8] K.He,X.Zhang,S.Ren,et al.Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.IEEE Transactions on Pattern Analysis&Machine Intelligence,2015,37(9):1904-1916.

[9] R.Girshick.Fast R-CNN.IEEE International Conference on Computer Vision (ICCV),2015.

[10] S.Ren,K.He,R.Girshick,J.Sun.Faster r-cnn:Towards real-time object detection with region proposal networks.Annual Conference on Neural Information Processing Systems (NIPS),2015.

[11] J.Dai,Y.Li,K.He,et al.R-FCN:Object Detection via Region-based Fully Convolutional Networks.Annual Conference on Neural Information Processing Systems (NIPS),2016.

[12] J.Redmon,S.Divvala,R.Girshick,et al.You only look once:Unified,real-time object detection.IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016.

[13] W.Liu,D.Anguelov,D.Erhan,et al.Ssd:Single shot multibox detector.European Conference on Computer Vision (ECCV),2016.

[14] T.Y.Lin,P.Dollár,R.Girshick,et al.Feature Pyramid Networks for Object Detection.arXiv:1612.03144,2016.

[15] J.Redmon,A.Farhadi.Yolo9000:Better,faster,stronger.IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017.

[16] T.Lin,P.Goyal,R.Girshick,et al.Dollar.Focal Loss for Dense Object Detection.arXiv:1708.02002v2,2018.

[17] S.Zhang,L.Wen,X.Bian,et al.Single-Shot Refinement Neural Network for Object Detection.arXiv:1711.06897,2018.

[18] J.Redmon,A.Farhadi.YOLOv3:An Incremental Improvement.arXiv:1804.02767,2018.

[19] F.Schroff,D.Kalenichenko,J.Philbin.FaceNet:A unified embedding for face recognition and clustering.IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2015,815-823.


[1]TOP-5错误率是指对每幅图像同时用5个类别标签进行预测:如果其中任何一次预测的结果正确,就认为预测正确;如果5次预测的结果都错了,才认为预测错误,这时的分类错误率就是TOP-5错误率。

[2]在多类别物体的检测中,对每个类别,都可以以召回率作为横轴、以准确率作为纵轴绘制一条曲线,AP(average precision)就是该曲线下的面积。mAP(mean average precision)是多个类别的AP的平均值。

[3]参考链接1-1。请访问本书前言中提到的页面下载参考链接列表。