水下可见光通信关键技术
上QQ阅读APP看书,第一时间看更新

参考文献

[1] STOJANOVIC M. On the relationship between capacity and distance in an underwater acoustic communication channel[C]//The Workshop on Underwater Networks. New York:ACM Press, 2006: 41-47.

[2] SENDRA S, LLORET J, JIMENEZ J M, et al. Underwater communications for video surveillance systems at 2.4 GHz[J]. Sensors, 2016, 16(10): 1769.

[3] HANSON F, RADIC S. High bandwidth underwater optical communication[J]. Applied Optics, 2008, 47(2): 277.

[4] DUNTLEY S Q. Light in the sea[J]. Journal of The Optical Society of America A, 1963,53:214-233.

[5] LENGYEL B A. Lasers: generation of light by stimulated emission[M]. New York: Wiley,1962.

[6] CHAPLIN M. Water absorption spectrum[EB]. 2016.

[7] KARP S. Optical communications between underwater and above surface (satellite) terminals[J]. IEEE Transactions on Communications, 1976, 24(1): 66-81.

[8] PUSCHELL J J, GIANNARIS R J, STOTTS L. The autonomous data optical relay experiment:First two way laser communication between an aircraft and submarine[C]//NTC-92: National Telesytems Conference. Piscataway: IEEE Press, 1992: 27-30.

[9] Sonardyne BlueComm underwater optical modem[EB]. 2016.

[10] NAKAMURA K, MIZUKOSHI I, HANAWA M. Optical wireless transmission of 405 nm,1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel[J]. Optics Express, 2015, 23(2): 1558-1566.

[11] OUBEI H M, DURAN J R, BILAL J, et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450 nm laser for underwater wireless optical communication[J]. Optics Express,2015, 23(18): 23302-9.

[12] HO C M, LU C K, LU H H, et al. A 10 m/10 Gbit/s underwater wireless laser transmission system[C]//Optical Fiber Communications Conference & Exhibition. Piscataway: IEEE Press,2017.

[13] HUANG Y F, TSAI C T, KAO H Y, et al. 17.6-Gbit/s Universal filtered multi-carrier encoding of GaN blue LD for visible light communication[C]//CLEO: Science and Innovations.Piscataway: IEEE Press, 2017.

[14] ZHAO Y, SHI M, CHI N. Application of multilayer perceptron in under water visible light communication system[C]//8th International Multidisciplinary Conference on Optofluidics.Shanghai: IMCO, 2018.

[15] WANG F, LIU Y, SHI M, et al. 3.075 Gbit/s underwater visible light communication utilizing hardware pre-equalizer with multiple feature points[J]. Optics Communications, 2019, 58(5):056117.

[16] ZOU P, LIU Y, WANG F, et al. Enhanced performance of odd order square geometrical shaping QAM constellation in underwater and free space VLC system[J]. Optics Communications, 2018.

[17] ZHOU Y, ZHU X, HU F, et al. Common-anode LED on a Si substrate for beyond 15 Gbit/s underwater visible light communication[J]. Photonics Research, 2019, 7(9): 1019-1029.

[18] WANG Y, TAO L, HUANG X, et al. 8 Gbit/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer[J]. IEEE Photonics Journal,2015, 7(6): 1-7.

[19] QIAO L, LU X, LIANG S, et al. Performance analysis of space multiplexing by superposed signal in multi-dimensional VLC system[J]. Optics Express 2018, 26(16): 19762-19772.

[20] CHI N. LED-based visible light communications[M]. Heidelberg: Springer, 2018: 13-38.

[21] WANG F, LIU Y, SHI M, et al. 3.075 Gbit/s underwater visible light communication utilizing hardware pre-equalizer with multiple feature points[J]. Optical Engineering, 2019, 58(5): 1-9.

[22] FUJIEDA I, KOSUGI T, INABA Y. Speckle noise evaluation and reduction of an edge-lit backlight system utilizing laser diodes and an optical fiber[J]. Journal of Display Technology, 2009, 5(11): 414-417.