习题二
A组
1.指出下列函数是怎样复合而成的:
2.什么是分段函数?分段函数是几个函数?分段函数是初等函数么?
3.选择题:
(1)已知数列0,1,0,1,…,则_____
A.收敛于0 B.收敛于1 C.发散 D.以上结论都不对
(2)下面数列中收敛的是_____
(3)下面数列中发散的是_____
(4)收敛数列一定_____
A.有界 B.无界
C.可以有界也可以无界 D.以上都不对
(5)x→x0时,函数极限存在的充要条件是_____
A.左极限存在 B.右极限存在
C.左、右极限都存在 D.左、右极限都存在且相等
(6)当x→0时,是_____
A.无穷小量 B.无穷大量 C.有界变量 D.无界变量
(7)当x→∞时,是_____
A.无穷大量 B.无穷小量 C.有界变量 D.没有意义的量
(8)两个无穷大量之差是_____
A.0 B.无穷大量 C.常数 D.不一定
(9)如果xn是无穷小量,yn是无穷大量,那么一定是_____
A.无穷小量 B.无穷大量 C.常数 D.以上结论都不对
(10)当x→x0时,函数f(x)有极限是f(x)在x0点处连续的_____
A.充分条件 B.必要条件 C.充要条件 D.以上都不对
(11)下列条件:
①函数f(x)在x0点有定义;②存在;③.①②③是函数在点x0处连续的_____
A.充分条件 B.必要条件 C.充要条件 D.以上都不对
4.证明不存在.
分别讨论x→0及x→1时,f(x)的极限是否存在
6.求极限:
7.当x→1时,无穷小x-1与(1)x2-1,(2)是否同阶?是否等价?
8.求证:当x→0时,.
9.已知,试确定b的值.
10.设=2,试求a,b的值.
11.求函数的间断点,并指出其类型.如果是可去间断点,则补充定义,使它连续.
试确定a的值,使存在.
问:k为何值时f(x)在(-∞,+∞)内连续?为什么?
B组
1.下列函数是怎样复合而成的?
2.选择题.
(1)数列xn与yn的极限分别为a与b,且a≠b,那么数列x1,y1,x2,y2,x3,y3,…的极限为_____
A.a B.b C.a+b D.不存在
(2)=_____
A.-1 B.1 C.∞ D.不存在
(3)下列极限存在的是_____
(4)当x→0时,无穷小量α=x2与的关系是_____
A.β与α是等价无穷小量 B.β与α是同阶非等价无穷小量
C.β是比α较高阶的无穷小量 D.β是比α较低阶的无穷小量
(5)已知当x→0时,f(x)是无穷大量,下列变量当x→0时一定是无穷小量的是_____
(6)当x→∞时,若,则a,b,c的值为_____
A.a=0,b=1,c=1 B.a=0,b=1,c为任意常数
C.a=0,b,c为任意常数 D.a,b,c均为任意常数
(7)下面结论正确的是_____
(8)函数在点x=1处_____
A.连续 B.不连续,但有右连续
C.不连续,但有左连续 D.左、右都不连续
(9)函数的间断点有
A.1个 B.2个 C.3个 D.4个
(10)下列函数在点x=0处均不连续,但x=0是f(x)的可去间断点的是_____
3.求极限:
4.已知,试确定b的值.
5.已知极限存在,试确定a的值,并求出此极限值.
9.试证:当x→0时下列函数均为无穷小量,并与x进行比较.
10.利用等价无穷小求下列极限:
11.问a为何值时在(-∞,+∞)上是连续函数.
12.在x=0处连续,问a何b应满足何种关系.
13.讨论函数在分段点处的连续性,或确定a的值使函数f(x)在分段点处连续:
14.求函数的间断点,并指出其类型:
15.讨论函数的连续性,并判断间断点的类型.
16.设函数f(x)=ex-x-2,证明:在区间(0,2)内方程f(x)=0有一个实根.
17.证明:函数方程x-ksinx=1当0<k<1时,仅有一个实根,且位于区间(1,2)内.