高寒草地耐低温产酶真菌及其利用
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

参考文献

[1] 荣娟敏,孙波.水热条件和土壤类型对纤维素分解菌的影响[J].土壤,2012,44(1):84-89.

[2] 张崇邦,金则新,李均敏.浙江天台山不同林型土壤环境的微生物区系和细菌生理群的多样性[J].生物多样性,2001,9(4):382-388.

[3] 肖剑英,张磊,谢德体等.长期免耕稻田的土壤微生物与肥力关系研究[J].西南农业大学学报,2002,24(1):82-85.

[4] 章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系[J].土壤与环境,2002,11(2):140-143.

[5] 王启兰,曹广民,王长庭.高寒草甸不同植被土壤微生物数量及微生物生物量的特征[J].生态学杂志,2007,26(7):1002-1008.

[6] 马丽萍,张德罡,姚拓.天祝高寒草地不同扰动生境纤维素分解菌数量动态研究[J].草原与草坪,2005,(1):39-41.

[7] Schmidt S K,Lipson D A.Microbial growth under the snow:implications for nutrient and alleochemical availability in temperate soils[J].Plant and Soil,2004,259:1-7.

[8] Wallenstein M D,McMahon S,Schimel J.Bacterial and fungal community structure in Arctic tundra tussock and shrub soils[J].FEMS Microbiology Ecology,2007,59(2):428-435.

[9] Monson R K,Lipson D A,Burns S P,et al.Winter forest soil respiration controlled by climate and microbial community composition[J].Nature,2006,439:711-714.

[10] 李英年,姜文波.亚高山草甸土纤维素分解过程及与环境因子的对应关系[J].土壤通报,2000,31(3):122-124.

[11] Schmidt SK,Costello E K,Nemergut D R,et al.Biogeochemical Consequences of rapid microbial turnover and seasonal succession in soil[J].Ecology,2007,88(6):1379-1385.

[12] Donnelly P K,Entry J A,Crawford D L,et al.Cellulose and lignin degradation in forest soils:Response to moisture,temperature and acidity[J]. Microbial Ecology,1990,20:289-295.

[13] 王启兰,曹广民,姜文波等.高寒湿地植物残体降解的动态分析[J].草业学报,2004,13(4):39-44.

[14] 尚占环,丁玲玲,龙瑞军等.江河源区高寒草地土壤微生物数量特征[J].草原与草坪,2006,118(5):3-7.

[15] 田兴军,立石贵浩.亚高山针叶林土壤动物和土壤微生物对针叶的分解作用[J].植物生态学报. 2002,26 (3):257-263.

[16] 彭少麟.热带亚热带恢复生态学研究与实践[M ].北京,科学出版社,2003:275-307.

[17] Adamet Z L.Untersuchungen fiber die niederen Pilze der Ackerkrume[J].lnaug Diss Leipzig,1986:78.

[18] Mueller G M,Schmit J P.Fungal biodiversity.What do we know What can we predict Biodivers[J].Conserv,2007,16:1-5.

[19] Reichle D E.The role of soil inverteb rates in nut rient cycling .In:Lohm U,Persson T (eds)Soil organism of ecosyst ems[J].Ecol Bull(Stockholm),1997,25:145-156.

[20] Trangmar B B,Yost R S,Uehara G.Application of geostatistics to spatial studies of soil properties [J]. Advances in Agronomy,1985,38:45-94.

[21] Huggett R J.Soil chronosequences,soil development,and soil evolution:a critical review[J]. Catena,1998,32:155-172.

[22] Green J L,Holmes A J,Westob Y M,et al.Spatial scaling of microbial eukaryote diversity[J]. Nature,2004,432:747-750.

[23] Nachimuthu G,King K,Kristiansen P,et al.Comparison of methods for measuring soil microbial activity using cotton strips and a respirometer[J].Journal of Microbiological Methods,2007,69:322-329.

[24] Brussaard L,De Ruiter P C,Brown G G.Soil biodiversity for agricultural sustainability[J]. Agriculture,Ecosystems and Environment,2007,121(3):233-244.

[25] 张体操,乔琴,钟扬.青藏高原生物资源开发的现状与前景[J].生命科学,2013,25(5):446-450.

[26] Diana R Nemergut,Steven K Schmidt,Tadashi Fukami,et al.Patterns and Processes of Microbial Community Assembly[J].microbiology and melocular biology reviews,2013,77(4):342-356.

[27] Jansson J K,Prosser J I. Microbiology:the life beneath our feet[J].Nature,2013,494:40-41.

[28] Finlay B J,Clarke K J. Ubiquitous dispersal of microbial species[J].Nature,1999,400:828-828.

[29] Peay K G,Bruns T D,Kennedy P G,et al.A strong species-area relationship for eukaryotic soil microbes:island size matters for ectomycorrhizal fungi[J].Ecol Lett,2002,10:470-480.

[30] He J Z,Ge Y.Recent advances in soil microbial biogeography[J].Acta Ecologica Sinica,2008,28:5571-5582.

[31] Emerson B C,Gillespie R G.Phylogenetic analysis of community assembly and structure over space and time[J].Trends Ecol Evol,2008,23:619-630.

[32] Valiente-Banuet A,Vital A,Verdú M,Callaway R. Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages[J].Proceedings of the National Academy of Sciences USA,2006,103:16812-16817.

[33] Valiente-Banuet A,Verdú M.Facilitation can increase the phylogenetic diversity of plant communities[J].Ecology Letters,doi:10.1111/j.1461-0248.2007.01100.x

[34] Webb J K,Brook B W,What makes a species vulnerable to extinction Comparative life-history traits of two sympatric snakes[J].Ecol Res,2002,17:59-67.

[35] Uriarte M,Swenson N G,Chazdon R L,et al.Trait similarity,shared ancestry and the structure of neighbourhood interactions in a subtropical wet forest:implications for community assembly[J].Ecol Lett,2010.13:1503-1514.

[36] Webb J K,Brook B W,Shine R.Collectors endanger Australia's most threatened snake,the broad-headed snake Hoplocephalus bungaroides[J].Oryx,2002,36:170-181.

[37] Hibbett D S,Ohman A,Glotzer D,Nuhn M,Kirk P,Nilsson R H.Progress in molecular and morphological taxon discovery in fungi and options for formal classification of environmental sequences[J]. Fungal Biol Rev,2011,25:38-47.

[38] Waid J.S.Does soil biodiversity depend upon metabiotic activity and influences[J].Applied Soil Ecology,1999,13:151-158.

[39] Ritchie N J,Schutter M E,Dick R P,et al.Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil[J].A pplied and Environmental Microbiology,2000,66:1668-1675.

[40] Walter K D,Margaret K B,Courmey S C,et al.Biological properties of soil and subsurface sedimens under abandoned pasture and cropland[J].Soil Bioi Biochem,1997,2 (7):837-946.

[41] Garcia C,Hemandez T,Costa F.Microbial activity in soil under Mediterranean environmental conditions[J]. Soil Biology and Biochemistry,1994,26:1185-1191.

[42] Tiquia S M,Lloyd J,Herms D A,et al. Effects of mulching and fertilization on soil nutrients ,microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes[J].Applied Soil Ecology,2002,21:31-48.

[43] O'Donnell A G,Seasman M,Macrae A,et al.Plants and fertilizers as drivers of changes in microbial community structure and function in soils[J].Plant and Soil,2001,232:135-145.

[44] Bååth E,Anderson A H.Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLF-based techniques[J].Soil Biol Biochem,2003,35:955-963.

[45] Rousk J,Bååth E,Brookes P C,et al.Soil bacterial and fungal communities across a pH gradient in an arable soil[J].ISME J,2010,4:1340-1351.

[46] Zinger L,Shahnavaz B,Baptis F,et al.Microbial diversity in alpine tundra soils correlates with snow cover dynamics[J].ISME J,2009,3:850-859.

[47] Deslippe J R,Hartmann M,SimardS W,et al.Long-term warming alters the composition of Arctic soil microbial communities[J].FEMS Microbiol Ecol,2012,1:1-13.

[48] Schadt C W,Martin A P,Lipson D A,et al.Seasonal dynamics of previously unknown fungal lineages in tundra soils[J]. Science,301:1359-1361.

[49] Toberman H,Freeman C,Evans C,et al.Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil[J].FEMS Microbiol Ecol,2008,66:426-436.

[50] Buée M,Reich M,Murat C,et al.454 pyrosequencing analyses of forest soils reveals unexpectedly high fungal diversity[J]. New Phytol,2009,184:449-456.