脑血管疾病影像诊断
上QQ阅读APP看书,第一时间看更新

第二节 PET脑代谢断层显像

人体大脑是最活跃的器官,其功能活动极其复杂。脑代谢显像在研究中枢神经系统功能代谢活动的变化规律以及探讨脑部疾病的有效诊治方法等方面具有重要意义。下面笔者具体介绍PET脑代谢显像的原理和方法。

脑葡萄糖代谢显像:由于脑内没有糖的储备,脑血液中的葡萄糖是脑组织唯一能源物质,所以脑内葡萄糖代谢率的变化能够反映脑功能活动情况。18F-FDG为葡萄糖类似物,具有与葡萄糖相同的细胞转运以及己糖激酶磷酸化过程,但转化为18F-FDG-6-P后就不再参与葡萄糖的进一步代谢而滞留于脑细胞内。观察和测定18F-FDG在脑内的分布情况,就可以了解脑局部葡萄糖代谢状态,在脑血管疾病的患者中,也可以了解局部的脑血流情况。受检者禁食4小时以上,静脉注射18F-FDG 185~370MBq(5~10mCi),45~60分钟后进行脑葡萄糖代谢显像(cerebral glucose metabolic imaging)。影像经计算机重建获得18F-FDG在脑内分布的横断面、冠状面、矢状断层面和三维立体影像。

PET通过反映脑组织的代谢情况,在梗死灶和MMD的病情判断中有重要意义。生理状态下,葡萄糖为大脑皮质的唯一功能物质,故正常脑组织内18F-FDG的蓄积量很高。正常人18F-FDG影像示灰质区放射性明显高于白质区,一般情况下,放射性分布高低顺序与局部血流灌注影像相近,大脑皮质、基底节、丘脑、脑干、小脑影像清晰,左右两侧基本对称。在脑梗死、烟雾病中呈低代谢。正常脑葡萄糖影像见图4-2-1。

图4-2-1 正常头部18F-FDG PET图

典型病例1:

患者,男,45岁。左侧顶叶梗死史,18F-FDG PET图示左侧顶叶梗死区代谢减低(图4-2-2)。

图4-2-2 左侧顶叶梗死CT和FDG PET图

典型病例2:

患者,男,58岁。右侧颞叶梗死史,评价局部细胞有无存活(图4-2-3)。13NH3·H2O PET血流灌注显像示右侧颞叶血流灌注明显减低,18F-FDG PET糖代谢显像示右侧颞叶血流灌注减低区糖代谢亦明显减低,提示局部细胞坏死。

图4-2-3 右侧颞叶梗死后坏死,局部形成脑软化灶

上排为13NH3·H2O PET血流灌注显像示右侧颞叶灌注明显减低,下排为18F-FDG PET糖代谢显像示糖代谢亦明显减低

典型病例3:

患者,男,58岁。钩端螺旋体感染引起双侧大脑前动脉闭塞,评价脑血流灌注及细胞存活情况(图4-2-4)。MRI T2WI相显示双侧额叶片状长T2改变,13NH3·H2O PET显像提示双侧额叶血流灌注减低,18F-FDG PET显像提示双侧额叶糖代谢减低,局部坏死。

图4-2-4 烟雾病

钩端螺旋体感染引起双侧大脑前动脉闭塞。A:13NH3·H2O PET显像,双侧额叶血流灌注减低;B:18F-FDG PET显像,双侧额叶糖代谢减低;C:MRI T2WI相,箭头显示双侧额叶片状长T2改变

SPECT和PET在脑血管疾病中的主要作用就是通过观察血流灌注及储备情况来评价预后和危险程度。乙酰唑胺刺激试验已被用于评价在TIA、脑卒中及其他疾病中脑血管储备能力,为临床治疗方案制定提供依据,可有效改善患者预后。

(编者注:本章中部分图像由广东省人民医院伟伦PET诊断中心王淑侠主任提供。)

(林承赫 赵红光)

参考文献

[1]张永学,黄钢.核医学.第2版.北京:人民卫生出版社,2010.

[2]Asenbaum S,Reinprecht A,Brücke T,et al. A study of acetazolamide-induced changes in cerebral blood flow using 99mTc HMPAO SPECT in patients with cerebrovascular disease. Neuroradiology,1995,37(1):13-19.

[3]Asenbaum S,Brücke T,Pirker W,et al. Imaging of cerebral blood flow with technetium-99m-HMPAO and technetium-99m-ECD:a comparison. J Nucl Med,1998,39(4):613-618.

[4]Baird AE,Austin MC,McKay WJ,et al. Sensitivity and specificity of 99mTc-HMPAO SPECT cerebral perfusion measurements during the first 48 hours for the localization of cerebral infarction. Stroke,1997,28(5):976-980.

[5]Baird AE,Donnan GA,Austin M,et al. Preliminary experience with 99mTc-HMPAO SPECT in cerebral ischemia. Clin Exp Neurol,1991,28:43-49.

[6]Brass LM,Walovitch RC,Joseph JL,et al. The role of single photon emission computed tomography brain imaging with 99mTc-bicisate in the localization and definition of mechanism of ischemic stroke. J Cereb Blood Flow Metab,1994,14(Suppl 1):S91-S98.

[7]Choi H,Yoo MY,Cheon GJ,et al. Parametric cerebrovascular reserve images using acetazolamide 99mTc-HMPAO SPECT:A feasibility study of quantitative assessment. Nucl Med Mol Imaging,2013,47(3):188-195.

[8]Garrigue P,Giacomino L,Bucci C,et al. Single photon emission computed tomography imaging of cerebral blood flow,blood-brain barrier disruption,and apoptosis time course after focal cerebral ischemia in rats.Int J Stroke,2016,11(1):117-126.

[9]Jacquier-Sarlin MR,Polla BS,Slosman DO. Cellular basis of ECD brain retention. J Nucl Med,1996,37(10):1694-1697.

[10]Knop J,Thie A,Fuchs C,et al. 99mTc-HMPAO-SPECT with acetazolamide challenge to detect hemodynamic compromise in occlusive cerebrovascular disease. Stroke,1992,23(12):1733-1742.

[11]Matsuda H1,Tsuji S,Sumiya H,et al. Acetazolamide effect on vascular response in areas with diaschisis as measured by Tc-99m HMPAO brain SPECT. Clin Nucl Med,1992,17(7):581-586.

[12]Smith FW,Donald RT,Morris AJ,et al. The study of regional cerebral blood flow in stroke patients using technetium 99m HMPAO. Br J Radiol,1988,61(725):358-361.

[13]Tsuchida T,Nishizawa S,Yonekura Y,et al. SPECT images of technetium-99m-ethyl cysteinate dimer in cerebrovascular diseases:comparison with other cerebral perfusion tracers and PET. J Nucl Med,1994,35(1):27-31.