![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
1.2 课后习题详解
1.1 设质量为m的粒子在势场V(r)中运动。
(a)证明粒子的能量平均值为,式中
(能量密度)
(b)证明能量守恒公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image043.jpg?sign=1739032120-5LSwtJh0W5jxbUizaCVHVnYccBkuq8lr-0-6b316961a1e7d77314a4008a3889bd1c)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image044.jpg?sign=1739032120-61qRTzQhFtldnjmqjhqRWaqYCfyioKCD-0-2b18bc31c6c9b6e5138d96378c8c583d)
(势能平均值)
(动能平均值)
其中第一项可化为面积分,对于归一化的波函数,可以证明此面积分为零(见《量子力学教程》,18页脚注),所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image049.jpg?sign=1739032120-mPe3p7x0n52Cn5SUOgFK4BORT8J3aIO5-0-88768c4666dce907a691865058e321a6)
(b)按能量密度W和能流密度s的定义
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image050.jpg?sign=1739032120-LU993c83zl1J5GePvrBBeCjZWYfDSNj2-0-f10de7702f9dae59e4cedbe0e8311355)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image052.jpg?sign=1739032120-uPcQsESQhtT9lrFGrRyHyMKv7LSFhGt2-0-6327c807263baa9fa67e1981f919a5f8)
1.2 考虑单粒子的Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image053.jpg?sign=1739032120-6TDms91pX8ASsojF1zLb7pqTL6mVhqx5-0-bac0ed1442c00f590253356ca6e3e319)
V1与V2为实函数.
(a)证明粒子的概率(粒子数)不守恒;
(b)证明粒子在空间体积τ内的概率随时间的变化为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image054.jpg?sign=1739032120-roR5yNaxPZ88GOkPxjQhArVpheKCwJJS-0-da97468b358fee5b15180420016f29f0)
证明:由Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image055.jpg?sign=1739032120-gIzCZNSxcUiVOUSleoZUVfYO5P7c21ln-0-e93cb777b057f6faa56fcc7c209dc64a)
取复共轭
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image056.jpg?sign=1739032120-lGbpr6CsX6l0BsBrloeRdlkjfs7EFuNR-0-ee2e3b76e4393f590d0faeb80d08d083)
得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image058.jpg?sign=1739032120-bmUHN8FUXRCkigxMur3KLUAgkpJ4vP8y-0-56e52c44019260789b0e15b561cf1c3d)
积分,利用Stokes定理
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image059.jpg?sign=1739032120-JFhBNFkB7BcOmSmkbeotQlOtJhSWYzz4-0-f3acf63df66f12bd1e24a006fc4d6736)
对于可归一化波函数,当,上式第一项(面积分)为0,而
,所以
不为0,即粒子数不守恒.
1.3 对于一维自由粒子
(a)设波函数为,试用Hamilton算符
对
运算,验证
;说明动量本征态
是Hamilton量(能量)本征态,能量本征值为
(b)设粒子在初始(t=0)时刻,求
(c)设波函数为,可以看成无穷多个平面波
的叠加,即无穷多个动量本征态
的叠加,试问
是否是能量本征态?
(d)设粒子在t=0时刻,求
.
解:(a)容易计算出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image077.jpg?sign=1739032120-pFBIsYeveLGtYmq7M75CMl9CcU82iYHq-0-f435e515e59dc1515034291cf3ee5eb9)
所以动量本征态量(能量)的本征态,能量本征值为
.
(b)其Fourier变换为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image081.jpg?sign=1739032120-mUkCfGZ7aJh1GWVo3hn75IRN4AAX7UQ1-0-67311febc2a819480ead686fd4e5e203)
由于ψ(x,0)是能量本征态,按《量子力学教程》1.2节,(37)式,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image082.jpg?sign=1739032120-hcuQMO7ij2HKsW7IrbnDRbQxecHMr4r5-0-03c60e1b0dbff385f84c2728d0921921)
(c)对于自由粒子,动量本征态,亦即能量本征态,由于是无穷多个动量本征态
的叠加,所以
不是能量本征态.
(d)因为,按《量子力学教程》1.2节,(5)式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image087.jpg?sign=1739032120-tDJ9w8esvuu8ZrnQCivwBgTHrs2MkeJh-0-d51f7f264462fd637621efd718a8a070)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image088.jpg?sign=1739032120-efVARfSHZK4BIt91Wxhtr3cIS09TNqPV-0-cfda2c79c22f2c8b35368397d2fb536d)
计算中利用了积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image089.jpg?sign=1739032120-2oYwuv9gUBw57Klo1XPTkxPsBcUQvByO-0-c6e0064463af39eaf81de25062baf72a)
1.4 设一维自由粒子的初态为一个Gauss波包
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image092.jpg?sign=1739032120-NDe0xdr3FQYyqkPK8kVGufoYYV7hZBot-0-14b653f49828dfbbaa8d7f5e59107059)
(1)证明初始时刻,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image094.jpg?sign=1739032120-ki3gxgarxrhab0ClEJk8UyAUnSVp6SSF-0-ae478f02debee1ab82cb6c534881959b)
(2)计算t时刻的波函数
解:(1)初始时刻
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image095.jpg?sign=1739032120-LD8wkq7ewHjes9q0qCPU65sxe5lDq4zH-0-f4ef1a2c106bb1173b5734fc09d4c1d1)
按《量子力学教程》1.2节,(18)式之逆变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image096.jpg?sign=1739032120-aBpUZrtQSuz5DwPi0euC8HzdbVkWiEi0-0-68b9e8968a0c7c28523c8504c41e2266)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image097.jpg?sign=1739032120-azwbGooaZ7dO3pzFoZ9NTa7JdMm2VvWb-0-d0486fdad8c1ac400f4ff0d00ff73ea5)
(2)按《量子力学教程》1.2节的讨论(见1.2节,(5)式,(18)式)可知,在t>0时的波函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image098.jpg?sign=1739032120-NRqqsYol9yWuRWqnrnXcS5AAo3tbCOm8-0-56fc1d01b76e94d79df37f0d6f6cd266)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image099.jpg?sign=1739032120-xfxDA1Z4c8eYtB8M0C4RnErytcrSvvJb-0-3ed46b16971ba7d3c100d7eb680529b0)
可见随时间的增加,波包逐渐扩散,振幅逐渐减小,而其宽度△x逐渐增大.
1.5 设一维自由粒子的初态为,证明在足够长时间后,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image101.jpg?sign=1739032120-GzDccrfh3Zv1cUZ6HbVPATi0cq2rjI38-0-9d3e455cb857a10ca41b8a6241d215cb)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image102.jpg?sign=1739032120-YteT3r9BBOwriGTDBnuFDFEYuy515QKf-0-cb47cf471fe8f9b2706a9337868d577f)
是ψ(x,0)的Fourier变换
提示:利用
证明:根据自由粒子的动量(能量)本征态随时间变化的规律,式中
所以时刻t的波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image106.jpg?sign=1739032120-ZTZtWkXKfqRzE7lJZJH29sgCLNCCu327-0-5f9a6ec89fa91eb09330ce2d50c53a3d)
当时间足够长后(t→∞),利用积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image107.jpg?sign=1739032120-SCLLHFknz5yZUfKmWs76RDgrLYDr06ng-0-af786d073a24ad069ce82aa546d4d062)
上式被积函数中指数函数具有δ函数的性质,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image108.jpg?sign=1739032120-5owSzQyoOmduh83kLVC2CG689jk6pYQb-0-004eb8054c0edcd934db66a377951092)
1.6 按照粒子密度分布ρ和粒子流密度分布j的表示式(1.2节式(13),(14))
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image109.jpg?sign=1739032120-wPcjB9JU067oUCbiyRqXrHZJ0wTDOhYz-0-589eb19390cd3c890612cdfefc3f1269)
定义粒子的速度分布v
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image110.jpg?sign=1739032120-5Tbbq3ztMA8Rm9r2xSoTFfWdee8ryL8S-0-c3f38ef1da6fe79d52eb0c4397fa5d2d)
证明设想v描述一个速度场,则v为一个无旋场.
证明:按照上述v的定义,可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image112.jpg?sign=1739032120-bfqXYfiP3liZKw42JIVmxhBa0STF0ecw-0-19dc6e4df56537e860683c50f96248c1)
1.7 处于势场V(r)中的粒子,在坐标表象中的能量本征方程表示成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image113.jpg?sign=1739032120-8DaTvURP81H1bjTEtVgFWcmuYTBQpMcH-0-8433726225fef04ddb947667e5bc4cf0)
试在动量表象中写出相应的能量本征方程.
解:利用的Fourier变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image115.jpg?sign=1739032120-f3csNHFKwdxxqSREkMCX918yvYX4Qbxk-0-4416cf061b32128b95de846d03cd6bf5)
可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image116.jpg?sign=1739032120-IuktYYiU4Y90qZ6ese2AZQir11eX0wst-0-1d1fb40c9731c33279b2773f45c1e67f)
即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image117.jpg?sign=1739032120-mKxNu3Ryz7EQcuPr7yGfqYeSet0xP7sn-0-5100020a1a4fbec7a8d09cdef9a07bc2)
所以在动量表象中相应的能量本征方程为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image118.jpg?sign=1739032120-zrMi8baiVzvNErRhX8KfJDMpOOSuCdCt-0-9f123b84b8678c4732deed2d668267eb)