前言
回想2017年4月,当清华大学出版社的编辑找到杨培文和我,商量着写一本与深度学习相关的书时,我还是比较缺乏信心的。首先,自己本专业是基因组学,或者说是生物学,机器学习方面的知识都是自学的。其次,我根本就没有写过书,由我参与撰写,可能是班门弄斧,内容有误都是小事,万一写的内容给读者灌输了错误的观念、在大方向上误导了初学阶段的读者,实在是难辞其咎。
出版社方面同样了解我们的情况,跟我们说出版社这次想出一本面向非数学、计算机相关专业的书,希望语言更加通俗易懂,例子更贴近实际项目,让非专业出身的人看了以后,对机器学习、图像处理以及深度学习三者有一个最基本的认识。这里,我经常向生物、医学专业背景的人解释机器学习模型的原理,而培文则有多次数据分析竞赛名列前茅的经历,因此出版社希望我们两位尝试一下。
所以接下来编写书籍的过程中,我们的定位就是相比现在市面上主流的相关书籍,前几章写得更加通俗,把入门的门槛再降低一些;然后后面的章节基于参加数据分析竞赛的实战过程,把最终的目标再定高一些;最后我们的配套代码以及环境(http://github.com/Jinglue/DL4Img)要让初学者可以很容易地跑起来,把书籍的内容落在实际运用中。
我们希望这本书可以让非科班出身的读者快速了解深度学习的基本原理,将相关技术举一反三,运用在自己的课题、项目中。以我自己为例,在书籍编写完成后的审阅过程中,我仔细阅读了培文撰写的运用循环神经网络进行验证码识别这一章节(第10章)的内容,后来参加百度AI挑战赛时,最初的模型就是培文整理的配套代码,后来经过调整,最后取得了第二名的成绩。
最后一点,阅读本书,需要读者具有基本的Python编程基础,以及科学计算相关模块的了解。这部分内容本书并未涉及,但读者可以通过斯坦福大学cs228相关配套入门习题进行简单的了解,我们对此进行了汉化(https://jizhi.ai/blog/post/cs228-py)。
在此感谢景略集智的王文凯、柯希阳在书籍编写过程中提供的帮助。
胡博强
2018年7月18日