2.4 参考文献及网页链接
[1] 2.2. Manifold learning¶. 2.2. Manifold learning — scikit-learn 0.19.0 documentation. Available at: http://scikit-learn.org/stable/modules/manifold.html.
[2] Cross entropy. Wikipedia (2017). Available at: https://en.wikipedia.org/wiki/Cross_entropy.
[3] Foundation, N. I. P. S. NIPS 2017. Available at: https://nips.cc/Conferences/2016/Schedule?showEvent=6203.
[4] Logistic regression. Wikipedia (2017). Available at: https://en.wikipedia.org/wiki/ Logistic_regression.
[5] One Hot Encoding in Scikit-Learn. ritchieng.github.io. Available at: http://www.ritchieng.com/ machinelearning-one-hot-encoding/.
[6] Training, test and validation sets. Wikipedia (2017). Available at: http://en.wikipedia.org/wiki/Training,_test_and_validation_sets.
[7] Underfitting vs. Overfitting. Underfitting vs. Overfitting — scikit-learn 0.19.0 documentation. Available at: http://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html.
[8] 吴军.数据之美[M].2版.北京:人民邮电出版社,2014.
[9] 周志华.机器学习[M].北京:清华大学出版社,2016.
[10] 机器学习基础——PCA(主成分分析).g11d111的博客——CSDN博客.Available at: http://blog.csdn.net/g11d111/article/details/66473643.