Python深度学习:基于TensorFlow
上QQ阅读APP看书,第一时间看更新

如何阅读本书

本书共22章,按照“基础→应用→扩展”的顺序展开,分为三个部分。

第一部分(第1~5章)为Python和应用数学基础部分:第1章介绍Python和TensorFlow的基石Numpy;第2章介绍深度学习框架的鼻祖Theano;第3~5章介绍机器学习、深度学习算法应用数学基础,包括线性代数、概率与信息论、概率图等内容。

第二部分(第6~20章)为深度学习理论与应用部分:第6章为机器学习基础,也是深度学习基础,其中包含很多机器学习的经典理论和算法;第7章为深度学习理论及方法;第8~10章介绍TensorFlow基于CPU、GPU版本的安装及使用,TensorFlow基础,TensorFlow的一些新API,如Dataset API、Estimator API等(基于TensorFlow1.6版本);第11~15章为深度学习中神经网络方面的模型及TensorFlow实战案例;第16章介绍TensorFlow的高级封装,如Keras、Estimator、TFLearn等内容;第17~20章为TensorFlow综合实战案例,包括图像识别、自然语言处理等内容。

第三部分(第21~22章)为扩展部分:介绍强化学习、生成式对抗网络等内容。