人脸识别原理及算法:动态人脸识别系统研究
上QQ阅读APP看书,第一时间看更新

前言

随着人类迈入数字时代,生物特征的身份鉴定技术愈加显示出其价值。在美国,基于这项技术的产业规模已达数10亿美元,每年有上亿美元的福利款项被他人以假冒身份领取。MasterCard公司估计,每年有价值4.5亿美元的信用卡诈骗案发生,其中包括利用丢失和被盗的信用卡犯罪;每年因身份识别码被盗造成移动电话通信的损失高达10亿美元。

比尔·盖茨曾下过这样的断言:生物识别技术将成为未来几年IT产业的重要革新。盖茨言论的背后支撑是,越来越多的个人、消费者、公司乃至政府机关都承认,现有的基于智能卡、身份号和密码的身份识别系统是远远不够的,生物特征识别技术将在未来提供解决方案方面占据重要的地位。在短期内,生物鉴别法便可与智能卡操作系统结合,用户可通过使用个人密码及生物鉴别法来确认身份。

人脸识别是模式识别和计算机视觉的交叉领域,关于它的研究最早开始于20世纪50年代,当时的研究主要基于人脸的外部轮廓方法。由于人脸轮廓的提取比较困难,在随后的10多年中,人脸识别的研究相对停滞。后来人脸识别方法有了新的突破。人脸识别将计算机视觉和模式识别结合在一起,广泛地应用在机器人学等学科中。

作为人类几个重要的外在鉴别特征之一,人脸识别在自动鉴别和人类自动分辨方面有着重要的意义。与指纹识别和虹膜识别相比较,人脸识别有其独特的优势。在广域样本范围内,指纹识别和虹膜识别的取样样本都具有唯一性,即对于任意两个样本,他们的指纹或虹膜不会是完全相同的。另外指纹和虹膜的成像不会因为在不同时刻有差别而得到不同的结果,这就决定了待识别图像和样本本身一样是具有唯一性的。人脸图像受成像角度、光照条件等外界因素的影响比较大,即使相同的人脸,在图像成像后也可能有比较大的差别;另外,不同的人脸在一定的角度下有时也有较大的相似度,这两个因素导致人脸识别复杂性比较高、识别难度比较大,这些都是人脸识别研究的实际困难。但是,指纹和虹膜的获取都要求待识别对象与成像设备有较近的空间距离,而人脸图像的获取突破了这一限制。在一般可视情况下,人脸图像都能够被正常捕捉,这一因素决定了人脸识别比指纹、虹膜识别有更广的应用范围,诸如在远程安全、检疫、图像传送等方面。20世纪90年代Internet的蓬勃发展对于网络安全和鉴别的需求也导致了人脸识别越来越具有实用性。

人脸识别技术具有广泛的应用前景,在国家安全、军事安全和公共安全领域,智能门禁、智能视频监控、公安布控、海关身份验证、司机驾照验证等是其极典型的应用;在民事和经济领域,各类银行卡、金融卡、信用卡、储蓄卡的持卡人身份验证以及社会保险人的身份验证等都具有重要的应用价值;在家庭娱乐等领域,人脸识别技术也具有一些有趣有益的应用,比如能够识别主人身份的智能玩具、家政机器人以及具有真实面像的虚拟游戏玩家等。

目前国外的很多大学都有研究小组在进行人脸识别、跟踪方面的研究,包括MIT的VISMOD实验室、CMU的机器人研究所、Cornell大学、Berkeley大学等,它们都是人脸识别的重要研究机构。国内对人脸识别的研究也日益活跃,中国科学院、清华大学、哈尔滨工业大学、南京理工大学等科研单位和大学,都有研究小组对人脸识别进行长期的跟踪研究。与此同时,国际、国内的公司也都开始致力于人脸识别的投入,如A4Vision、Neven Vision、VisionSphere公司等;国内也有一些公司也参与了这方面的研究。这些研究主要应用于金库人员识别、银行卡识别、特殊安全系统。