统计学关我什么事:生活中的极简统计学
上QQ阅读APP看书,第一时间看更新

1-2 第一步:通过经验设定“先验概率”

假设一个场景:面前有一位顾客,此时你需要做的是,推测该顾客究竟是“来买东西的人”,还是“随便逛逛的人”。只有做出正确的判断,才能采取正确的接待方法。

推算的第一步:将两种顾客(来买东西的顾客、随便逛逛的顾客)的比例进行数值分配。这句话的意思是:假设面前的这位顾客一定属于两种中的一种,以此为前提,该顾客为第一种或第二种的可能性分别为多少?将这个可能性用数值表示出来。

在贝叶斯统计学中,这种“某种类别的概率(比例)”有一个专有名词,叫作“先验概率”。“事前”的含义是:在获得某项信息之前。此处的“信息”是指:附加的状况,比如顾客忽然过来询问。通过“过来询问”这一信息,可以对顾客类别的推算进行修改,而“先验概率”是指,在“过来询问”或“不过来询问”的情况发生之前进行的概率判断。

通常,“先验概率”可通过经验来判断。在特殊情况下,即使没有类似经验,也可以进行判断,这部分特殊事例将在第3讲进行解说,此处暂且不做讨论。

根据自己的经验,每5位顾客中就有1位是“来买东西的”,也就是说,这一部分顾客占全体的20%(0.2),那么剩下“随便逛逛”部分的比例便为80%(0.8)。这两个数字,便是两类顾客的“先验概率”。

在这个事例中,在观察面前顾客的行为之前,判断“该顾客是属于概率0.2的买东西的人,还是概率0.8的随便逛逛的人”,这个过程被称为“某一类别的先验分布”,图表1-1所示。

图表1-1 先验分布:分割长方形

图表1-1中的大长方形被分割为两部分,两部分的面积所占比例分别为0.2和0.8,这正是分割时的诀窍。本书将在后面逐渐阐明:“面积”的概念在贝叶斯概率的计算中,起着重要的作用

以上图示的方法为本书独创。希望各位读者将这幅图牢记于心,这样有助于在头脑中勾勒出贝叶斯统计学方法的大致雏形。

该图可以理解为:将整体分为两种不同的情况。这意味着,自己所处的环境为A或B中的一个,A情况下的顾客为“来买东西的人”,B情况下的顾客为“随便逛逛的人”,但不知道究竟是A还是B。只是先在头脑中构筑一个大致的印象。哲学上将这种见解称为“可能世界”,在进行逻辑推算或概率推算时,采用这种“划分互不相同的可能性”的思维方法,有利于整理思路。

在这里将长方形的面积设定为0.1和0.4,两部分的比例依然为1∶4,这与设定为0.2和0.8时的比例相同。那么,为何要将面积设置为0.2和0.8呢?这是因为,用数值来计算概率的情况下,需要在多种可能性中,选取“将各部分概率相加,总和为1”的那一种,这种情况被称为“标准化条件”