第9章
The inventor, though disappointed, was by no means cast down. He clung tenaciously to his pet scheme and to such effect that in 1896 a German Engineering Society advanced him some funds to continue his researches. This support sufficed to keep things going for another two years, during which time a full-sized vessel was built. The grand idea began to crystallise rapidly, with the result that when a public company was formed in 1898, sufficient funds were rendered available to enable the first craft to be constructed. It aroused considerable attention, as well it might, seeing that it eclipsed anything which had previously been attempted in connection with dirigibles. It was no less than 420 feet in length, by 38 feet in diameter, and was fitted with two cars, each of which carried a sixteen horse-power motor driving independent propellers rigidly attached to the body of the vessel. The propellers were both vertical and horizontal, for the purpose of driving the ship in the two planes--vertical and horizontal respectively.
The vessel was of great scientific interest, owing to the ingenuity of its design and construction. The metallic skeleton was built up from aluminium and over this was stretched the fabric of the envelope, care being observed to reduce skin friction, as well as to achieve impermeability. But it was the internal arrangement of the gas-lifting balloons which provoked the greatest concern. The hull was divided into compartments, each complete in itself, and each containing a small balloon inflated with hydrogen. It was sub-division as practised in connection with vessels ploughing the water applied to aerial craft, the purpose being somewhat the same. As a ship of the seas will keep afloat so long as a certain number of its subdivisions remain watertight, so would the Zeppelin keep aloft if a certain number of the gas compartments retained their charges of hydrogen. There were no fewer than seventeen of these gas-balloons arranged in a single line within the envelope.
Beneath the hull and extending the full length of the latter was a passage which not only served as a corridor for communication between the cars, but also to receive a weight attached to a cable worked by a winch. By the movement of this weight the bow or stem of the vessel could be tilted to assist ascent and descent.
The construction of the vessel subsequently proved to be the easiest and most straightforward part of the whole undertaking.
There were other and more serious problems to be solved. How would such a monster craft come to earth? How could she be manipulated upon the ground? How could she be docked? Upon these three points previous experience was silent. One German inventor who likewise had dreamed big things, and had carried them into execution, paid for his temerity and ambitions with his life, while his craft was reduced to a mass of twisted and torn metal. Under these circumstances Count Zeppelin decided to carry out his flights over the waters of the Bodensee and to house his craft within a floating dock. In this manner two uncertain factors might be effectively subjugated.
Another problem had been ingeniously overcome. The outer envelope presented an immense surface to the atmosphere, while temperature was certain to play an uncertain part in the behaviour of the craft. The question was to reduce to the minimum the radiation of heat and cold to the bags containing the gas. This end was achieved by leaving a slight air space between the inflated gas balloons and the inner surface of the hull.
The first ascent was made on July 2nd, 1900, but was disappointing, several breakdowns of the mechanism occurring while the vessel was in mid-air, which rendered it unmanageable, although a short flight was made which sufficed to show that an independent speed of 13 feet per second could be attained. The vessel descended and was made fast in her dock, the descent being effected safely, while manoeuvring into dock was successful. At least three points about which the inventor had been in doubt appeared to be solved--his airship could be driven through the air and could be steered; it could be brought to earth safely; and it could be docked.
The repairs to the mechanism were carried out and on October 17th and 21st of the same year further flights were made. By this time certain influential Teuton aeronautical experts who had previously ridiculed Zeppelin's idea had made a perfect volte-face. They became staunch admirers of the system, while other meteorological savants participated in the trials for the express purpose of ascertaining just what the ship could do. As a result of elaborate trigonometrical calculations it was ascertained that the airship attained an independent speed of 30 feet per second, which exceeded anything previously achieved. The craft proved to be perfectly manageable in the air, and answered her helm, thus complying with the terms of dirigibility. The creator was flushed with his triumph, but at the same time was doomed to experience misfortune. In its descent the airship came to "earth" with such a shock that it was extensively damaged. The cost of repairing the vessel was so heavy that the company declined to shoulder the liability, and as the Count was unable to defray the expense the wreck was abandoned.