第61章 LAPLACE.(2)
With an armament of mathematical methods which had been perfected since the days of Newton by the labours of two or three generations of consummate mathematical inventors, Laplace essayed in the "Mecanique Celeste" to unravel the mysteries of the heavens. It will hardly be disputed that the book which he has produced is one of the most difficult books to understand that has ever been written. In great part, of course, this difficulty arises from the very nature of the subject, and is so far unavoidable. No one need attempt to read the "Mecanique Celeste" who has not been naturally endowed with considerable mathematical aptitude which he has cultivated by years of assiduous study. The critic will also note that there are grave defects in Laplace's method of treatment. The style is often extremely obscure, and the author frequently leaves great gaps in his argument, to the sad discomfiture of his reader. Nor does it mend matters to say, as Laplace often does say, that it is "easy to see"how one step follows from another. Such inferences often present great difficulties even to excellent mathematicians. Tradition indeed tells us that when Laplace had occasion to refer to his own book, it sometimes happened that an argument which he had dismissed with his usual formula, "Il est facile a voir," cost the illustrious author himself an hour or two of hard thinking before he could recover the train of reasoning which had been omitted. But there are certain parts of this great work which have always received the enthusiastic admiration of mathematicians. Laplace has, in fact, created whole tracts of science, some of which have been subsequently developed with much advantage in the prosecution of the study of Nature.
Judged by a modern code the gravest defect of Laplace's great work is rather of a moral than of a mathematical nature. Lagrange and he advanced together in their study of the mechanics of the heavens, at one time perhaps along parallel lines, while at other times they pursued the same problem by almost identical methods. Sometimes the important result was first reached by Lagrange, sometimes it was Laplace who had the good fortune to make the discovery. It would doubtless be a difficult matter to draw the line which should exactly separate the contributions to astronomy made by one of these illustrious mathematicians, and the contributions made by the other.
But in his great work Laplace in the loftiest manner disdained to accord more than the very barest recognition to Lagrange, or to any of the other mathematicians, Newton alone excepted, who had advanced our knowledge of the mechanism of the heavens. It would be quite impossible for a student who confined his reading to the "Mecanique Celeste" to gather from any indications that it contains whether the discoveries about which he was reading had been really made by Laplace himself or whether they had not been made by Lagrange, or by Euler, or by Clairaut. With our present standard of morality in such matters, any scientific man who now brought forth a work in which he presumed to ignore in this wholesale fashion the contributions of others to the subject on which he was writing, would be justly censured and bitter controversies would undoubtedly arise. Perhaps we ought not to judge Laplace by the standard of our own time, and in any case I do not doubt that Laplace might have made a plausible defence. It is well known that when two investigators are working at the same subjects, and constantly publishing their results, it sometimes becomes difficult for each investigator himself to distinguish exactly between what he has accomplished and that which must be credited to his rival. Laplace may probably have said to himself that he was going to devote his energies to a great work on the interpretation of Nature, that it would take all his time and all his faculties, and all the resources of knowledge that he could command, to deal justly with the mighty problems before him. He would not allow himself to be distracted by any side issue. He could not tolerate that pages should be wasted in merely discussing to whom we owe each formula, and to whom each deduction from such formula is due. He would rather endeavour to produce as complete a picture as he possibly could of the celestial mechanics, and whether it were by means of his mathematics alone, or whether the discoveries of others may have contributed in any degree to the result, is a matter so infinitesimally insignificant in comparison with the grandeur of his subject that he would altogether neglect it. "If Lagrange should think," Laplace might say, "that his discoveries had been unduly appropriated, the proper course would be for him to do exactly what Ihave done. Let him also write a "Mecanique Celeste," let him employ those consummate talents which he possesses in developing his noble subject to the utmost. Let him utilise every result that I or any other mathematician have arrived at, but not trouble himself unduly with unimportant historical details as to who discovered this, and who discovered that; let him produce such a work as he could write, and I shall heartily welcome it as a splendid contribution to our science." Certain it is that Laplace and Lagrange continued the best of friends, and on the death of the latter it was Laplace who was summoned to deliver the funeral oration at the grave of his great rival.