1.13 EDA的发展趋势
随着市场需求的增长,集成工艺水平及计算机自动设计技术的不断提高,促使单片系统,或称系统集成芯片成为IC设计的发展方向,这一发展趋势表现在如下几个方面:
- 超大规模集成电路的集成度和工艺水平不断提高,如28nm工艺已经走向成熟,在一个芯片上完成的系统级的集成已成为可能。
- 由于工艺线宽的不断减小,在半导体材料上的许多寄生效应已经不能简单地被忽略。这就对EDA工具提出了更高的要求。同时,也使得IC生产线的投资更为巨大。可编程逻辑器件开始进入传统的ASIC市场。
- 市场对电子产品提出了更高的要求,如必须降低电子系统的成本,减小系统的体积等,从而对系统的集成度不断提出更高的要求。同时,设计的效率也成了一个产品能否成功的关键因素,促使EDA工具和IP核应用更为广泛。
- 高性能的EDA工具得到长足的发展,其自动化和智能化程度不断提高,为嵌入式系统设计提供了功能强大的开发环境。
- 计算机硬件平台性能大幅度提高,为复杂的SOC设计提供了物理基础。
但现有的HDL只是提供行为级或功能级的描述,尚无法完成对复杂的系统级的抽象描述。人们正尝试开发一种新的系统级设计语言来完成这一工作,现在已开发出更趋于电路行为级的硬件描述语言,如SystemC、SystemVerilog及系统级混合仿真工具,可以在同一个开发平台上完成高级语言,如C/C++等,与标准HDL语言(Verilog HDL、VHDL)或其他更低层次描述模块的混合仿真。虽然用户用高级语言编写的模块尚不能自动转化成HDL描述,但作为一种针对特定应用领域的开发工具,软件供应商已经为常用的功能模块提供了丰富的宏单元库支持,可以方便地构建应用系统,并通过仿真加以优化,最后自动产生HDL代码,进入下一阶段的ASIC实现。
此外,随着系统开发对EDA技术的目标器件各种性能要求的提高,ASIC和FPGA将在更大程度上相互融合。这是因为虽然标准逻辑ASIC芯片尺寸小、功能强大、耗电省,但设计复杂,并且有批量生产要求;可编程逻辑器件开发费用低廉,能在现场进行编程,但体积大、功能有限,而且功耗较大。因此,FPGA和ASIC正在走到一起,互相融合,取长补短。由于一些ASIC制造商提供具有可编程逻辑的标准单元,可编程器件制造商重新对标准逻辑单元发生兴趣,而有些公司采取两头并进的方法,从而使市场开始发生变化,在FPGA和ASIC之间正在诞生一种“杂交”产品,以满足成本和上市速度的要求。例如将可编程逻辑器件嵌入标准单元。
尽管将标准单元核与可编程器件集成在一起并不意味着使ASIC更加便宜,或使FPGA更加省电。但是,可使设计人员将两者的优点结合在一起,通过去掉FPGA的一些功能,可减少成本和开发时间并增加灵活性。当然现今也在进行将ASIC嵌入可编程逻辑单元的工作。许多PLD公司开始为ASIC提供FPGA内核。PLD厂商与ASIC制造商结盟,为SOC设计提供嵌入式FPGA模块,使未来的ASIC供应商有机会更快地进入市场,利用嵌入式内核获得更长的市场生命期。
例如在实际应用中使用所谓可编程系统级集成电路(FPSLIC),即将嵌入式FPGA内核与RISC微控制器组合在一起形成新的IC,广泛用于电信、网络、仪器仪表和汽车中的低功耗应用系统中。当然,也有PLD厂商,不把CPU的硬核直接嵌入在FPGA中,使用了软IP核,并称之为SOPC(可编程片上系统),也可以完成复杂电子系统的设计,只是代价将相应提高。
现在,传统ASIC和FPGA之间的界限正变得模糊。系统级芯片不仅集成RAM和微处理器,也集成FPGA。整个EDA和IC设计工业都朝这个方向发展,这并非是FPGA与ASIC制造商竞争的产物,而对于用户来说,意味着有了更多的选择。