更新时间:2022-06-28 16:16:39
封面
版权页
关于作者
关于封面
O'Reilly Media Inc.介绍
本书赞誉
译者序
序言
前言
第一部分 构建模型
第1章 TensorFlow简介
1.1 什么是机器学习
1.2 传统编程的局限性
1.3 从编程到学习
1.4 什么是TensorFlow
1.5 使用TensorFlow
1.6 初学机器学习
1.7 总结
第2章 计算机视觉简介
2.1 识别服装
2.2 视觉神经元
2.3 设计神经网络
2.4 训练神经网络
2.5 探索模型输出
2.6 训练更长时间,发现过拟合
2.7 停止训练
2.8 总结
第3章 图像特征检测
3.1 卷积
3.2 池化
3.3 实现卷积神经网络
3.4 探索卷积网络
3.5 创建一个CNN来区分马和人
3.6 图像增强
3.7 迁移学习
3.8 多类别分类
3.9 dropout正则化
3.10 总结
第4章 TensorFlow Datasets
4.1 TFDS入门
4.2 在Keras模型中使用TFDS
4.3 使用映射函数进行增强
4.4 使用自定义分割
4.5 理解TFRecord
4.6 TensorFlow中管理数据的ETL过程
4.7 总结
第5章 自然语言处理简介
5.1 将语言编码为数字
5.2 移除停用词和清理文本
5.3 使用真实数据源
5.4 总结
第6章 使用嵌入来编程情感
6.1 从词建立意义
6.2 TensorFlow中的嵌入
6.3 可视化嵌入
6.4 使用来自TensorFlow Hub的预训练嵌入
6.5 总结
第7章 自然语言处理的循环神经网络
7.1 循环的基础
7.2 为语言扩展循环
7.3 使用RNN创建文本分类器
7.4 在RNN中使用预训练的嵌入
7.5 总结
第8章 使用TensorFlow创建文本
8.1 将序列转换为输入序列
8.2 创建模型
8.3 生成文本
8.4 扩展数据集
8.5 改变模型架构
8.6 改进数据
8.7 基于字符的编码
8.8 总结
第9章 理解序列和时间序列数据
9.1 时间序列的常见属性
9.2 预测时间序列的技术
9.3 总结
第10章 创建ML模型来预测序列
10.1 创建窗口数据集
10.2 创建并训练DNN来拟合序列数据
10.3 评估DNN的结果
10.4 探索整体的预测
10.5 调整学习率
10.6 使用Keras Tuner探索超参数调优
10.7 总结
第11章 序列模型中的卷积和循环
11.1 序列数据的卷积
11.2 使用NASA天气数据
11.3 使用RNN进行序列建模
11.4 使用其他循环方法
11.5 使用dropout
11.6 使用双向RNN
11.7 总结
第二部分 使用模型
第12章 TensorFlow Lite简介
12.1 什么是TensorFlow Lite
12.2 演练:创建模型并将其转换为TensorFlow Lite
12.3 演练:迁移学习图像分类器并转换到TensorFlow Lite
12.4 总结
第13章 在Android应用程序中使用TensorFlow Lite
13.1 什么是Android Studio